Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cdivcncf | Structured version Visualization version GIF version |
Description: Division with a constant numerator is continuous. (Contributed by Mario Carneiro, 28-Dec-2016.) |
Ref | Expression |
---|---|
cdivcncf.1 | ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)) |
Ref | Expression |
---|---|
cdivcncf | ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ ((ℂ ∖ {0})–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
2 | 1 | cnfldtopon 23991 | . . . . 5 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℂ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) |
4 | difss 4072 | . . . 4 ⊢ (ℂ ∖ {0}) ⊆ ℂ | |
5 | resttopon 22357 | . . . 4 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (ℂ ∖ {0}) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0}))) | |
6 | 3, 4, 5 | sylancl 587 | . . 3 ⊢ (𝐴 ∈ ℂ → ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) ∈ (TopOn‘(ℂ ∖ {0}))) |
7 | id 22 | . . . 4 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
8 | 6, 3, 7 | cnmptc 22858 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝑥 ∈ (ℂ ∖ {0}) ↦ 𝐴) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) Cn (TopOpen‘ℂfld))) |
9 | 6 | cnmptid 22857 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝑥 ∈ (ℂ ∖ {0}) ↦ 𝑥) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})))) |
10 | eqid 2736 | . . . . 5 ⊢ ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) = ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) | |
11 | 1, 10 | divcn 24076 | . . . 4 ⊢ / ∈ (((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) Cn (TopOpen‘ℂfld)) |
12 | 11 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → / ∈ (((TopOpen‘ℂfld) ×t ((TopOpen‘ℂfld) ↾t (ℂ ∖ {0}))) Cn (TopOpen‘ℂfld))) |
13 | 6, 8, 9, 12 | cnmpt12f 22862 | . 2 ⊢ (𝐴 ∈ ℂ → (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) Cn (TopOpen‘ℂfld))) |
14 | cdivcncf.1 | . 2 ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑥)) | |
15 | ssid 3948 | . . 3 ⊢ ℂ ⊆ ℂ | |
16 | 2 | toponrestid 22115 | . . . 4 ⊢ (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ) |
17 | 1, 10, 16 | cncfcn 24118 | . . 3 ⊢ (((ℂ ∖ {0}) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((ℂ ∖ {0})–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) Cn (TopOpen‘ℂfld))) |
18 | 4, 15, 17 | mp2an 690 | . 2 ⊢ ((ℂ ∖ {0})–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ {0})) Cn (TopOpen‘ℂfld)) |
19 | 13, 14, 18 | 3eltr4g 2854 | 1 ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ ((ℂ ∖ {0})–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ∖ cdif 3889 ⊆ wss 3892 {csn 4565 ↦ cmpt 5164 ‘cfv 6458 (class class class)co 7307 ℂcc 10915 0cc0 10917 / cdiv 11678 ↾t crest 17176 TopOpenctopn 17177 ℂfldccnfld 20642 TopOnctopon 22104 Cn ccn 22420 ×t ctx 22756 –cn→ccncf 24084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 ax-mulf 10997 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-er 8529 df-map 8648 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-fi 9214 df-sup 9245 df-inf 9246 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-q 12735 df-rp 12777 df-xneg 12894 df-xadd 12895 df-xmul 12896 df-icc 13132 df-fz 13286 df-fzo 13429 df-seq 13768 df-exp 13829 df-hash 14091 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-starv 17022 df-sca 17023 df-vsca 17024 df-ip 17025 df-tset 17026 df-ple 17027 df-ds 17029 df-unif 17030 df-hom 17031 df-cco 17032 df-rest 17178 df-topn 17179 df-0g 17197 df-gsum 17198 df-topgen 17199 df-pt 17200 df-prds 17203 df-xrs 17258 df-qtop 17263 df-imas 17264 df-xps 17266 df-mre 17340 df-mrc 17341 df-acs 17343 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-submnd 18476 df-mulg 18746 df-cntz 18968 df-cmn 19433 df-psmet 20634 df-xmet 20635 df-met 20636 df-bl 20637 df-mopn 20638 df-cnfld 20643 df-top 22088 df-topon 22105 df-topsp 22127 df-bases 22141 df-cn 22423 df-cnp 22424 df-tx 22758 df-hmeo 22951 df-xms 23518 df-ms 23519 df-tms 23520 df-cncf 24086 |
This theorem is referenced by: divcncf 24656 dvrec 25164 dirkercncflem4 43696 fourierdlem40 43737 fourierdlem78 43774 |
Copyright terms: Public domain | W3C validator |