MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem4 Structured version   Visualization version   GIF version

Theorem bposlem4 27331
Description: Lemma for bpos 27337. (Contributed by Mario Carneiro, 13-Mar-2014.)
Hypotheses
Ref Expression
bpos.1 (𝜑𝑁 ∈ (ℤ‘5))
bpos.2 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
bpos.3 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
bpos.4 𝐾 = (⌊‘((2 · 𝑁) / 3))
bpos.5 𝑀 = (⌊‘(√‘(2 · 𝑁)))
Assertion
Ref Expression
bposlem4 (𝜑𝑀 ∈ (3...𝐾))
Distinct variable groups:   𝐹,𝑝   𝑛,𝑝,𝐾   𝑀,𝑝   𝑛,𝑁,𝑝   𝜑,𝑛,𝑝
Allowed substitution hints:   𝐹(𝑛)   𝑀(𝑛)

Proof of Theorem bposlem4
StepHypRef Expression
1 2nn 12339 . . . . . . . 8 2 ∈ ℕ
2 5nn 12352 . . . . . . . . 9 5 ∈ ℕ
3 bpos.1 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ‘5))
4 eluznn 12960 . . . . . . . . 9 ((5 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ ℕ)
52, 3, 4sylancr 587 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
6 nnmulcl 12290 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
71, 5, 6sylancr 587 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℕ)
87nnred 12281 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℝ)
97nnrpd 13075 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℝ+)
109rpge0d 13081 . . . . . 6 (𝜑 → 0 ≤ (2 · 𝑁))
118, 10resqrtcld 15456 . . . . 5 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ)
1211flcld 13838 . . . 4 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ ℤ)
13 sqrt9 15312 . . . . . 6 (√‘9) = 3
14 9re 12365 . . . . . . . . 9 9 ∈ ℝ
1514a1i 11 . . . . . . . 8 (𝜑 → 9 ∈ ℝ)
16 10re 12752 . . . . . . . . 9 10 ∈ ℝ
1716a1i 11 . . . . . . . 8 (𝜑10 ∈ ℝ)
18 lep1 12108 . . . . . . . . . . 11 (9 ∈ ℝ → 9 ≤ (9 + 1))
1914, 18ax-mp 5 . . . . . . . . . 10 9 ≤ (9 + 1)
20 9p1e10 12735 . . . . . . . . . 10 (9 + 1) = 10
2119, 20breqtri 5168 . . . . . . . . 9 9 ≤ 10
2221a1i 11 . . . . . . . 8 (𝜑 → 9 ≤ 10)
23 5cn 12354 . . . . . . . . . 10 5 ∈ ℂ
24 2cn 12341 . . . . . . . . . 10 2 ∈ ℂ
25 5t2e10 12833 . . . . . . . . . 10 (5 · 2) = 10
2623, 24, 25mulcomli 11270 . . . . . . . . 9 (2 · 5) = 10
27 eluzle 12891 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘5) → 5 ≤ 𝑁)
283, 27syl 17 . . . . . . . . . 10 (𝜑 → 5 ≤ 𝑁)
295nnred 12281 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
30 5re 12353 . . . . . . . . . . . 12 5 ∈ ℝ
31 2re 12340 . . . . . . . . . . . . 13 2 ∈ ℝ
32 2pos 12369 . . . . . . . . . . . . 13 0 < 2
3331, 32pm3.2i 470 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
34 lemul2 12120 . . . . . . . . . . . 12 ((5 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
3530, 33, 34mp3an13 1454 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
3629, 35syl 17 . . . . . . . . . 10 (𝜑 → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
3728, 36mpbid 232 . . . . . . . . 9 (𝜑 → (2 · 5) ≤ (2 · 𝑁))
3826, 37eqbrtrrid 5179 . . . . . . . 8 (𝜑10 ≤ (2 · 𝑁))
3915, 17, 8, 22, 38letrd 11418 . . . . . . 7 (𝜑 → 9 ≤ (2 · 𝑁))
40 0re 11263 . . . . . . . . . 10 0 ∈ ℝ
41 9pos 12379 . . . . . . . . . 10 0 < 9
4240, 14, 41ltleii 11384 . . . . . . . . 9 0 ≤ 9
4314, 42pm3.2i 470 . . . . . . . 8 (9 ∈ ℝ ∧ 0 ≤ 9)
449rprege0d 13084 . . . . . . . 8 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)))
45 sqrtle 15299 . . . . . . . 8 (((9 ∈ ℝ ∧ 0 ≤ 9) ∧ ((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁))) → (9 ≤ (2 · 𝑁) ↔ (√‘9) ≤ (√‘(2 · 𝑁))))
4643, 44, 45sylancr 587 . . . . . . 7 (𝜑 → (9 ≤ (2 · 𝑁) ↔ (√‘9) ≤ (√‘(2 · 𝑁))))
4739, 46mpbid 232 . . . . . 6 (𝜑 → (√‘9) ≤ (√‘(2 · 𝑁)))
4813, 47eqbrtrrid 5179 . . . . 5 (𝜑 → 3 ≤ (√‘(2 · 𝑁)))
49 3z 12650 . . . . . 6 3 ∈ ℤ
50 flge 13845 . . . . . 6 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℤ) → (3 ≤ (√‘(2 · 𝑁)) ↔ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
5111, 49, 50sylancl 586 . . . . 5 (𝜑 → (3 ≤ (√‘(2 · 𝑁)) ↔ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
5248, 51mpbid 232 . . . 4 (𝜑 → 3 ≤ (⌊‘(√‘(2 · 𝑁))))
5349eluz1i 12886 . . . 4 ((⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3) ↔ ((⌊‘(√‘(2 · 𝑁))) ∈ ℤ ∧ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
5412, 52, 53sylanbrc 583 . . 3 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3))
55 3nn 12345 . . . . 5 3 ∈ ℕ
56 nndivre 12307 . . . . 5 (((2 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((2 · 𝑁) / 3) ∈ ℝ)
578, 55, 56sylancl 586 . . . 4 (𝜑 → ((2 · 𝑁) / 3) ∈ ℝ)
58 3re 12346 . . . . . . . . 9 3 ∈ ℝ
5958a1i 11 . . . . . . . 8 (𝜑 → 3 ∈ ℝ)
609sqrtgt0d 15451 . . . . . . . 8 (𝜑 → 0 < (√‘(2 · 𝑁)))
61 lemul2 12120 . . . . . . . 8 ((3 ∈ ℝ ∧ (√‘(2 · 𝑁)) ∈ ℝ ∧ ((√‘(2 · 𝑁)) ∈ ℝ ∧ 0 < (√‘(2 · 𝑁)))) → (3 ≤ (√‘(2 · 𝑁)) ↔ ((√‘(2 · 𝑁)) · 3) ≤ ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁)))))
6259, 11, 11, 60, 61syl112anc 1376 . . . . . . 7 (𝜑 → (3 ≤ (√‘(2 · 𝑁)) ↔ ((√‘(2 · 𝑁)) · 3) ≤ ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁)))))
6348, 62mpbid 232 . . . . . 6 (𝜑 → ((√‘(2 · 𝑁)) · 3) ≤ ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))))
64 remsqsqrt 15295 . . . . . . 7 (((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)) → ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) = (2 · 𝑁))
658, 10, 64syl2anc 584 . . . . . 6 (𝜑 → ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) = (2 · 𝑁))
6663, 65breqtrd 5169 . . . . 5 (𝜑 → ((√‘(2 · 𝑁)) · 3) ≤ (2 · 𝑁))
67 3pos 12371 . . . . . . . 8 0 < 3
6858, 67pm3.2i 470 . . . . . . 7 (3 ∈ ℝ ∧ 0 < 3)
6968a1i 11 . . . . . 6 (𝜑 → (3 ∈ ℝ ∧ 0 < 3))
70 lemuldiv 12148 . . . . . 6 (((√‘(2 · 𝑁)) ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((√‘(2 · 𝑁)) · 3) ≤ (2 · 𝑁) ↔ (√‘(2 · 𝑁)) ≤ ((2 · 𝑁) / 3)))
7111, 8, 69, 70syl3anc 1373 . . . . 5 (𝜑 → (((√‘(2 · 𝑁)) · 3) ≤ (2 · 𝑁) ↔ (√‘(2 · 𝑁)) ≤ ((2 · 𝑁) / 3)))
7266, 71mpbid 232 . . . 4 (𝜑 → (√‘(2 · 𝑁)) ≤ ((2 · 𝑁) / 3))
73 flword2 13853 . . . 4 (((√‘(2 · 𝑁)) ∈ ℝ ∧ ((2 · 𝑁) / 3) ∈ ℝ ∧ (√‘(2 · 𝑁)) ≤ ((2 · 𝑁) / 3)) → (⌊‘((2 · 𝑁) / 3)) ∈ (ℤ‘(⌊‘(√‘(2 · 𝑁)))))
7411, 57, 72, 73syl3anc 1373 . . 3 (𝜑 → (⌊‘((2 · 𝑁) / 3)) ∈ (ℤ‘(⌊‘(√‘(2 · 𝑁)))))
75 elfzuzb 13558 . . 3 ((⌊‘(√‘(2 · 𝑁))) ∈ (3...(⌊‘((2 · 𝑁) / 3))) ↔ ((⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3) ∧ (⌊‘((2 · 𝑁) / 3)) ∈ (ℤ‘(⌊‘(√‘(2 · 𝑁))))))
7654, 74, 75sylanbrc 583 . 2 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ (3...(⌊‘((2 · 𝑁) / 3))))
77 bpos.5 . 2 𝑀 = (⌊‘(√‘(2 · 𝑁)))
78 bpos.4 . . 3 𝐾 = (⌊‘((2 · 𝑁) / 3))
7978oveq2i 7442 . 2 (3...𝐾) = (3...(⌊‘((2 · 𝑁) / 3)))
8076, 77, 793eltr4g 2858 1 (𝜑𝑀 ∈ (3...𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070  ifcif 4525   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296   / cdiv 11920  cn 12266  2c2 12321  3c3 12322  5c5 12324  9c9 12328  cz 12613  cdc 12733  cuz 12878  ...cfz 13547  cfl 13830  cexp 14102  Ccbc 14341  csqrt 15272  cprime 16708   pCnt cpc 16874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-fl 13832  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274
This theorem is referenced by:  bposlem6  27333
  Copyright terms: Public domain W3C validator