MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem4 Structured version   Visualization version   GIF version

Theorem bposlem4 26015
Description: Lemma for bpos 26021. (Contributed by Mario Carneiro, 13-Mar-2014.)
Hypotheses
Ref Expression
bpos.1 (𝜑𝑁 ∈ (ℤ‘5))
bpos.2 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
bpos.3 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
bpos.4 𝐾 = (⌊‘((2 · 𝑁) / 3))
bpos.5 𝑀 = (⌊‘(√‘(2 · 𝑁)))
Assertion
Ref Expression
bposlem4 (𝜑𝑀 ∈ (3...𝐾))
Distinct variable groups:   𝐹,𝑝   𝑛,𝑝,𝐾   𝑀,𝑝   𝑛,𝑁,𝑝   𝜑,𝑛,𝑝
Allowed substitution hints:   𝐹(𝑛)   𝑀(𝑛)

Proof of Theorem bposlem4
StepHypRef Expression
1 2nn 11782 . . . . . . . 8 2 ∈ ℕ
2 5nn 11795 . . . . . . . . 9 5 ∈ ℕ
3 bpos.1 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ‘5))
4 eluznn 12393 . . . . . . . . 9 ((5 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ ℕ)
52, 3, 4sylancr 590 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
6 nnmulcl 11733 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
71, 5, 6sylancr 590 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℕ)
87nnred 11724 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℝ)
97nnrpd 12505 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℝ+)
109rpge0d 12511 . . . . . 6 (𝜑 → 0 ≤ (2 · 𝑁))
118, 10resqrtcld 14860 . . . . 5 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ)
1211flcld 13252 . . . 4 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ ℤ)
13 sqrt9 14716 . . . . . 6 (√‘9) = 3
14 9re 11808 . . . . . . . . 9 9 ∈ ℝ
1514a1i 11 . . . . . . . 8 (𝜑 → 9 ∈ ℝ)
16 10re 12191 . . . . . . . . 9 10 ∈ ℝ
1716a1i 11 . . . . . . . 8 (𝜑10 ∈ ℝ)
18 lep1 11552 . . . . . . . . . . 11 (9 ∈ ℝ → 9 ≤ (9 + 1))
1914, 18ax-mp 5 . . . . . . . . . 10 9 ≤ (9 + 1)
20 9p1e10 12174 . . . . . . . . . 10 (9 + 1) = 10
2119, 20breqtri 5052 . . . . . . . . 9 9 ≤ 10
2221a1i 11 . . . . . . . 8 (𝜑 → 9 ≤ 10)
23 5cn 11797 . . . . . . . . . 10 5 ∈ ℂ
24 2cn 11784 . . . . . . . . . 10 2 ∈ ℂ
25 5t2e10 12272 . . . . . . . . . 10 (5 · 2) = 10
2623, 24, 25mulcomli 10721 . . . . . . . . 9 (2 · 5) = 10
27 eluzle 12330 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘5) → 5 ≤ 𝑁)
283, 27syl 17 . . . . . . . . . 10 (𝜑 → 5 ≤ 𝑁)
295nnred 11724 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
30 5re 11796 . . . . . . . . . . . 12 5 ∈ ℝ
31 2re 11783 . . . . . . . . . . . . 13 2 ∈ ℝ
32 2pos 11812 . . . . . . . . . . . . 13 0 < 2
3331, 32pm3.2i 474 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
34 lemul2 11564 . . . . . . . . . . . 12 ((5 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
3530, 33, 34mp3an13 1453 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
3629, 35syl 17 . . . . . . . . . 10 (𝜑 → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
3728, 36mpbid 235 . . . . . . . . 9 (𝜑 → (2 · 5) ≤ (2 · 𝑁))
3826, 37eqbrtrrid 5063 . . . . . . . 8 (𝜑10 ≤ (2 · 𝑁))
3915, 17, 8, 22, 38letrd 10868 . . . . . . 7 (𝜑 → 9 ≤ (2 · 𝑁))
40 0re 10714 . . . . . . . . . 10 0 ∈ ℝ
41 9pos 11822 . . . . . . . . . 10 0 < 9
4240, 14, 41ltleii 10834 . . . . . . . . 9 0 ≤ 9
4314, 42pm3.2i 474 . . . . . . . 8 (9 ∈ ℝ ∧ 0 ≤ 9)
449rprege0d 12514 . . . . . . . 8 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)))
45 sqrtle 14703 . . . . . . . 8 (((9 ∈ ℝ ∧ 0 ≤ 9) ∧ ((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁))) → (9 ≤ (2 · 𝑁) ↔ (√‘9) ≤ (√‘(2 · 𝑁))))
4643, 44, 45sylancr 590 . . . . . . 7 (𝜑 → (9 ≤ (2 · 𝑁) ↔ (√‘9) ≤ (√‘(2 · 𝑁))))
4739, 46mpbid 235 . . . . . 6 (𝜑 → (√‘9) ≤ (√‘(2 · 𝑁)))
4813, 47eqbrtrrid 5063 . . . . 5 (𝜑 → 3 ≤ (√‘(2 · 𝑁)))
49 3z 12089 . . . . . 6 3 ∈ ℤ
50 flge 13259 . . . . . 6 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℤ) → (3 ≤ (√‘(2 · 𝑁)) ↔ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
5111, 49, 50sylancl 589 . . . . 5 (𝜑 → (3 ≤ (√‘(2 · 𝑁)) ↔ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
5248, 51mpbid 235 . . . 4 (𝜑 → 3 ≤ (⌊‘(√‘(2 · 𝑁))))
5349eluz1i 12325 . . . 4 ((⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3) ↔ ((⌊‘(√‘(2 · 𝑁))) ∈ ℤ ∧ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
5412, 52, 53sylanbrc 586 . . 3 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3))
55 3nn 11788 . . . . 5 3 ∈ ℕ
56 nndivre 11750 . . . . 5 (((2 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((2 · 𝑁) / 3) ∈ ℝ)
578, 55, 56sylancl 589 . . . 4 (𝜑 → ((2 · 𝑁) / 3) ∈ ℝ)
58 3re 11789 . . . . . . . . 9 3 ∈ ℝ
5958a1i 11 . . . . . . . 8 (𝜑 → 3 ∈ ℝ)
609sqrtgt0d 14855 . . . . . . . 8 (𝜑 → 0 < (√‘(2 · 𝑁)))
61 lemul2 11564 . . . . . . . 8 ((3 ∈ ℝ ∧ (√‘(2 · 𝑁)) ∈ ℝ ∧ ((√‘(2 · 𝑁)) ∈ ℝ ∧ 0 < (√‘(2 · 𝑁)))) → (3 ≤ (√‘(2 · 𝑁)) ↔ ((√‘(2 · 𝑁)) · 3) ≤ ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁)))))
6259, 11, 11, 60, 61syl112anc 1375 . . . . . . 7 (𝜑 → (3 ≤ (√‘(2 · 𝑁)) ↔ ((√‘(2 · 𝑁)) · 3) ≤ ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁)))))
6348, 62mpbid 235 . . . . . 6 (𝜑 → ((√‘(2 · 𝑁)) · 3) ≤ ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))))
64 remsqsqrt 14699 . . . . . . 7 (((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)) → ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) = (2 · 𝑁))
658, 10, 64syl2anc 587 . . . . . 6 (𝜑 → ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) = (2 · 𝑁))
6663, 65breqtrd 5053 . . . . 5 (𝜑 → ((√‘(2 · 𝑁)) · 3) ≤ (2 · 𝑁))
67 3pos 11814 . . . . . . . 8 0 < 3
6858, 67pm3.2i 474 . . . . . . 7 (3 ∈ ℝ ∧ 0 < 3)
6968a1i 11 . . . . . 6 (𝜑 → (3 ∈ ℝ ∧ 0 < 3))
70 lemuldiv 11591 . . . . . 6 (((√‘(2 · 𝑁)) ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((√‘(2 · 𝑁)) · 3) ≤ (2 · 𝑁) ↔ (√‘(2 · 𝑁)) ≤ ((2 · 𝑁) / 3)))
7111, 8, 69, 70syl3anc 1372 . . . . 5 (𝜑 → (((√‘(2 · 𝑁)) · 3) ≤ (2 · 𝑁) ↔ (√‘(2 · 𝑁)) ≤ ((2 · 𝑁) / 3)))
7266, 71mpbid 235 . . . 4 (𝜑 → (√‘(2 · 𝑁)) ≤ ((2 · 𝑁) / 3))
73 flword2 13267 . . . 4 (((√‘(2 · 𝑁)) ∈ ℝ ∧ ((2 · 𝑁) / 3) ∈ ℝ ∧ (√‘(2 · 𝑁)) ≤ ((2 · 𝑁) / 3)) → (⌊‘((2 · 𝑁) / 3)) ∈ (ℤ‘(⌊‘(√‘(2 · 𝑁)))))
7411, 57, 72, 73syl3anc 1372 . . 3 (𝜑 → (⌊‘((2 · 𝑁) / 3)) ∈ (ℤ‘(⌊‘(√‘(2 · 𝑁)))))
75 elfzuzb 12985 . . 3 ((⌊‘(√‘(2 · 𝑁))) ∈ (3...(⌊‘((2 · 𝑁) / 3))) ↔ ((⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3) ∧ (⌊‘((2 · 𝑁) / 3)) ∈ (ℤ‘(⌊‘(√‘(2 · 𝑁))))))
7654, 74, 75sylanbrc 586 . 2 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ (3...(⌊‘((2 · 𝑁) / 3))))
77 bpos.5 . 2 𝑀 = (⌊‘(√‘(2 · 𝑁)))
78 bpos.4 . . 3 𝐾 = (⌊‘((2 · 𝑁) / 3))
7978oveq2i 7175 . 2 (3...𝐾) = (3...(⌊‘((2 · 𝑁) / 3)))
8076, 77, 793eltr4g 2850 1 (𝜑𝑀 ∈ (3...𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  wrex 3054  ifcif 4411   class class class wbr 5027  cmpt 5107  cfv 6333  (class class class)co 7164  cr 10607  0cc0 10608  1c1 10609   + caddc 10611   · cmul 10613   < clt 10746  cle 10747   / cdiv 11368  cn 11709  2c2 11764  3c3 11765  5c5 11767  9c9 11771  cz 12055  cdc 12172  cuz 12317  ...cfz 12974  cfl 13244  cexp 13514  Ccbc 13747  csqrt 14675  cprime 16105   pCnt cpc 16266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-sup 8972  df-inf 8973  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-3 11773  df-4 11774  df-5 11775  df-6 11776  df-7 11777  df-8 11778  df-9 11779  df-n0 11970  df-z 12056  df-dec 12173  df-uz 12318  df-rp 12466  df-fz 12975  df-fl 13246  df-seq 13454  df-exp 13515  df-cj 14541  df-re 14542  df-im 14543  df-sqrt 14677
This theorem is referenced by:  bposlem6  26017
  Copyright terms: Public domain W3C validator