MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem4 Structured version   Visualization version   GIF version

Theorem bposlem4 25777
Description: Lemma for bpos 25783. (Contributed by Mario Carneiro, 13-Mar-2014.)
Hypotheses
Ref Expression
bpos.1 (𝜑𝑁 ∈ (ℤ‘5))
bpos.2 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
bpos.3 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
bpos.4 𝐾 = (⌊‘((2 · 𝑁) / 3))
bpos.5 𝑀 = (⌊‘(√‘(2 · 𝑁)))
Assertion
Ref Expression
bposlem4 (𝜑𝑀 ∈ (3...𝐾))
Distinct variable groups:   𝐹,𝑝   𝑛,𝑝,𝐾   𝑀,𝑝   𝑛,𝑁,𝑝   𝜑,𝑛,𝑝
Allowed substitution hints:   𝐹(𝑛)   𝑀(𝑛)

Proof of Theorem bposlem4
StepHypRef Expression
1 2nn 11699 . . . . . . . 8 2 ∈ ℕ
2 5nn 11712 . . . . . . . . 9 5 ∈ ℕ
3 bpos.1 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ‘5))
4 eluznn 12307 . . . . . . . . 9 ((5 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ ℕ)
52, 3, 4sylancr 587 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
6 nnmulcl 11650 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
71, 5, 6sylancr 587 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℕ)
87nnred 11642 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℝ)
97nnrpd 12419 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℝ+)
109rpge0d 12425 . . . . . 6 (𝜑 → 0 ≤ (2 · 𝑁))
118, 10resqrtcld 14767 . . . . 5 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ)
1211flcld 13158 . . . 4 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ ℤ)
13 sqrt9 14623 . . . . . 6 (√‘9) = 3
14 9re 11725 . . . . . . . . 9 9 ∈ ℝ
1514a1i 11 . . . . . . . 8 (𝜑 → 9 ∈ ℝ)
16 10re 12106 . . . . . . . . 9 10 ∈ ℝ
1716a1i 11 . . . . . . . 8 (𝜑10 ∈ ℝ)
18 lep1 11470 . . . . . . . . . . 11 (9 ∈ ℝ → 9 ≤ (9 + 1))
1914, 18ax-mp 5 . . . . . . . . . 10 9 ≤ (9 + 1)
20 9p1e10 12089 . . . . . . . . . 10 (9 + 1) = 10
2119, 20breqtri 5088 . . . . . . . . 9 9 ≤ 10
2221a1i 11 . . . . . . . 8 (𝜑 → 9 ≤ 10)
23 5cn 11714 . . . . . . . . . 10 5 ∈ ℂ
24 2cn 11701 . . . . . . . . . 10 2 ∈ ℂ
25 5t2e10 12187 . . . . . . . . . 10 (5 · 2) = 10
2623, 24, 25mulcomli 10639 . . . . . . . . 9 (2 · 5) = 10
27 eluzle 12245 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘5) → 5 ≤ 𝑁)
283, 27syl 17 . . . . . . . . . 10 (𝜑 → 5 ≤ 𝑁)
295nnred 11642 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
30 5re 11713 . . . . . . . . . . . 12 5 ∈ ℝ
31 2re 11700 . . . . . . . . . . . . 13 2 ∈ ℝ
32 2pos 11729 . . . . . . . . . . . . 13 0 < 2
3331, 32pm3.2i 471 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
34 lemul2 11482 . . . . . . . . . . . 12 ((5 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
3530, 33, 34mp3an13 1445 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
3629, 35syl 17 . . . . . . . . . 10 (𝜑 → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
3728, 36mpbid 233 . . . . . . . . 9 (𝜑 → (2 · 5) ≤ (2 · 𝑁))
3826, 37eqbrtrrid 5099 . . . . . . . 8 (𝜑10 ≤ (2 · 𝑁))
3915, 17, 8, 22, 38letrd 10786 . . . . . . 7 (𝜑 → 9 ≤ (2 · 𝑁))
40 0re 10632 . . . . . . . . . 10 0 ∈ ℝ
41 9pos 11739 . . . . . . . . . 10 0 < 9
4240, 14, 41ltleii 10752 . . . . . . . . 9 0 ≤ 9
4314, 42pm3.2i 471 . . . . . . . 8 (9 ∈ ℝ ∧ 0 ≤ 9)
449rprege0d 12428 . . . . . . . 8 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)))
45 sqrtle 14610 . . . . . . . 8 (((9 ∈ ℝ ∧ 0 ≤ 9) ∧ ((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁))) → (9 ≤ (2 · 𝑁) ↔ (√‘9) ≤ (√‘(2 · 𝑁))))
4643, 44, 45sylancr 587 . . . . . . 7 (𝜑 → (9 ≤ (2 · 𝑁) ↔ (√‘9) ≤ (√‘(2 · 𝑁))))
4739, 46mpbid 233 . . . . . 6 (𝜑 → (√‘9) ≤ (√‘(2 · 𝑁)))
4813, 47eqbrtrrid 5099 . . . . 5 (𝜑 → 3 ≤ (√‘(2 · 𝑁)))
49 3z 12004 . . . . . 6 3 ∈ ℤ
50 flge 13165 . . . . . 6 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℤ) → (3 ≤ (√‘(2 · 𝑁)) ↔ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
5111, 49, 50sylancl 586 . . . . 5 (𝜑 → (3 ≤ (√‘(2 · 𝑁)) ↔ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
5248, 51mpbid 233 . . . 4 (𝜑 → 3 ≤ (⌊‘(√‘(2 · 𝑁))))
5349eluz1i 12240 . . . 4 ((⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3) ↔ ((⌊‘(√‘(2 · 𝑁))) ∈ ℤ ∧ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
5412, 52, 53sylanbrc 583 . . 3 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3))
55 3nn 11705 . . . . 5 3 ∈ ℕ
56 nndivre 11667 . . . . 5 (((2 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((2 · 𝑁) / 3) ∈ ℝ)
578, 55, 56sylancl 586 . . . 4 (𝜑 → ((2 · 𝑁) / 3) ∈ ℝ)
58 3re 11706 . . . . . . . . 9 3 ∈ ℝ
5958a1i 11 . . . . . . . 8 (𝜑 → 3 ∈ ℝ)
609sqrtgt0d 14762 . . . . . . . 8 (𝜑 → 0 < (√‘(2 · 𝑁)))
61 lemul2 11482 . . . . . . . 8 ((3 ∈ ℝ ∧ (√‘(2 · 𝑁)) ∈ ℝ ∧ ((√‘(2 · 𝑁)) ∈ ℝ ∧ 0 < (√‘(2 · 𝑁)))) → (3 ≤ (√‘(2 · 𝑁)) ↔ ((√‘(2 · 𝑁)) · 3) ≤ ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁)))))
6259, 11, 11, 60, 61syl112anc 1368 . . . . . . 7 (𝜑 → (3 ≤ (√‘(2 · 𝑁)) ↔ ((√‘(2 · 𝑁)) · 3) ≤ ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁)))))
6348, 62mpbid 233 . . . . . 6 (𝜑 → ((√‘(2 · 𝑁)) · 3) ≤ ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))))
64 remsqsqrt 14606 . . . . . . 7 (((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)) → ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) = (2 · 𝑁))
658, 10, 64syl2anc 584 . . . . . 6 (𝜑 → ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) = (2 · 𝑁))
6663, 65breqtrd 5089 . . . . 5 (𝜑 → ((√‘(2 · 𝑁)) · 3) ≤ (2 · 𝑁))
67 3pos 11731 . . . . . . . 8 0 < 3
6858, 67pm3.2i 471 . . . . . . 7 (3 ∈ ℝ ∧ 0 < 3)
6968a1i 11 . . . . . 6 (𝜑 → (3 ∈ ℝ ∧ 0 < 3))
70 lemuldiv 11509 . . . . . 6 (((√‘(2 · 𝑁)) ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((√‘(2 · 𝑁)) · 3) ≤ (2 · 𝑁) ↔ (√‘(2 · 𝑁)) ≤ ((2 · 𝑁) / 3)))
7111, 8, 69, 70syl3anc 1365 . . . . 5 (𝜑 → (((√‘(2 · 𝑁)) · 3) ≤ (2 · 𝑁) ↔ (√‘(2 · 𝑁)) ≤ ((2 · 𝑁) / 3)))
7266, 71mpbid 233 . . . 4 (𝜑 → (√‘(2 · 𝑁)) ≤ ((2 · 𝑁) / 3))
73 flword2 13173 . . . 4 (((√‘(2 · 𝑁)) ∈ ℝ ∧ ((2 · 𝑁) / 3) ∈ ℝ ∧ (√‘(2 · 𝑁)) ≤ ((2 · 𝑁) / 3)) → (⌊‘((2 · 𝑁) / 3)) ∈ (ℤ‘(⌊‘(√‘(2 · 𝑁)))))
7411, 57, 72, 73syl3anc 1365 . . 3 (𝜑 → (⌊‘((2 · 𝑁) / 3)) ∈ (ℤ‘(⌊‘(√‘(2 · 𝑁)))))
75 elfzuzb 12892 . . 3 ((⌊‘(√‘(2 · 𝑁))) ∈ (3...(⌊‘((2 · 𝑁) / 3))) ↔ ((⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3) ∧ (⌊‘((2 · 𝑁) / 3)) ∈ (ℤ‘(⌊‘(√‘(2 · 𝑁))))))
7654, 74, 75sylanbrc 583 . 2 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ (3...(⌊‘((2 · 𝑁) / 3))))
77 bpos.5 . 2 𝑀 = (⌊‘(√‘(2 · 𝑁)))
78 bpos.4 . . 3 𝐾 = (⌊‘((2 · 𝑁) / 3))
7978oveq2i 7159 . 2 (3...𝐾) = (3...(⌊‘((2 · 𝑁) / 3)))
8076, 77, 793eltr4g 2935 1 (𝜑𝑀 ∈ (3...𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wrex 3144  ifcif 4470   class class class wbr 5063  cmpt 5143  cfv 6352  (class class class)co 7148  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665   / cdiv 11286  cn 11627  2c2 11681  3c3 11682  5c5 11684  9c9 11688  cz 11970  cdc 12087  cuz 12232  ...cfz 12882  cfl 13150  cexp 13419  Ccbc 13652  csqrt 14582  cprime 16005   pCnt cpc 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-sup 8895  df-inf 8896  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-rp 12380  df-fz 12883  df-fl 13152  df-seq 13360  df-exp 13420  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584
This theorem is referenced by:  bposlem6  25779
  Copyright terms: Public domain W3C validator