MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem4 Structured version   Visualization version   GIF version

Theorem bposlem4 27205
Description: Lemma for bpos 27211. (Contributed by Mario Carneiro, 13-Mar-2014.)
Hypotheses
Ref Expression
bpos.1 (𝜑𝑁 ∈ (ℤ‘5))
bpos.2 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
bpos.3 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
bpos.4 𝐾 = (⌊‘((2 · 𝑁) / 3))
bpos.5 𝑀 = (⌊‘(√‘(2 · 𝑁)))
Assertion
Ref Expression
bposlem4 (𝜑𝑀 ∈ (3...𝐾))
Distinct variable groups:   𝐹,𝑝   𝑛,𝑝,𝐾   𝑀,𝑝   𝑛,𝑁,𝑝   𝜑,𝑛,𝑝
Allowed substitution hints:   𝐹(𝑛)   𝑀(𝑛)

Proof of Theorem bposlem4
StepHypRef Expression
1 2nn 12266 . . . . . . . 8 2 ∈ ℕ
2 5nn 12279 . . . . . . . . 9 5 ∈ ℕ
3 bpos.1 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ‘5))
4 eluznn 12884 . . . . . . . . 9 ((5 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ ℕ)
52, 3, 4sylancr 587 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
6 nnmulcl 12217 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
71, 5, 6sylancr 587 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℕ)
87nnred 12208 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℝ)
97nnrpd 13000 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℝ+)
109rpge0d 13006 . . . . . 6 (𝜑 → 0 ≤ (2 · 𝑁))
118, 10resqrtcld 15391 . . . . 5 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ)
1211flcld 13767 . . . 4 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ ℤ)
13 sqrt9 15246 . . . . . 6 (√‘9) = 3
14 9re 12292 . . . . . . . . 9 9 ∈ ℝ
1514a1i 11 . . . . . . . 8 (𝜑 → 9 ∈ ℝ)
16 10re 12675 . . . . . . . . 9 10 ∈ ℝ
1716a1i 11 . . . . . . . 8 (𝜑10 ∈ ℝ)
18 lep1 12030 . . . . . . . . . . 11 (9 ∈ ℝ → 9 ≤ (9 + 1))
1914, 18ax-mp 5 . . . . . . . . . 10 9 ≤ (9 + 1)
20 9p1e10 12658 . . . . . . . . . 10 (9 + 1) = 10
2119, 20breqtri 5135 . . . . . . . . 9 9 ≤ 10
2221a1i 11 . . . . . . . 8 (𝜑 → 9 ≤ 10)
23 5cn 12281 . . . . . . . . . 10 5 ∈ ℂ
24 2cn 12268 . . . . . . . . . 10 2 ∈ ℂ
25 5t2e10 12756 . . . . . . . . . 10 (5 · 2) = 10
2623, 24, 25mulcomli 11190 . . . . . . . . 9 (2 · 5) = 10
27 eluzle 12813 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘5) → 5 ≤ 𝑁)
283, 27syl 17 . . . . . . . . . 10 (𝜑 → 5 ≤ 𝑁)
295nnred 12208 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
30 5re 12280 . . . . . . . . . . . 12 5 ∈ ℝ
31 2re 12267 . . . . . . . . . . . . 13 2 ∈ ℝ
32 2pos 12296 . . . . . . . . . . . . 13 0 < 2
3331, 32pm3.2i 470 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
34 lemul2 12042 . . . . . . . . . . . 12 ((5 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
3530, 33, 34mp3an13 1454 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
3629, 35syl 17 . . . . . . . . . 10 (𝜑 → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
3728, 36mpbid 232 . . . . . . . . 9 (𝜑 → (2 · 5) ≤ (2 · 𝑁))
3826, 37eqbrtrrid 5146 . . . . . . . 8 (𝜑10 ≤ (2 · 𝑁))
3915, 17, 8, 22, 38letrd 11338 . . . . . . 7 (𝜑 → 9 ≤ (2 · 𝑁))
40 0re 11183 . . . . . . . . . 10 0 ∈ ℝ
41 9pos 12306 . . . . . . . . . 10 0 < 9
4240, 14, 41ltleii 11304 . . . . . . . . 9 0 ≤ 9
4314, 42pm3.2i 470 . . . . . . . 8 (9 ∈ ℝ ∧ 0 ≤ 9)
449rprege0d 13009 . . . . . . . 8 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)))
45 sqrtle 15233 . . . . . . . 8 (((9 ∈ ℝ ∧ 0 ≤ 9) ∧ ((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁))) → (9 ≤ (2 · 𝑁) ↔ (√‘9) ≤ (√‘(2 · 𝑁))))
4643, 44, 45sylancr 587 . . . . . . 7 (𝜑 → (9 ≤ (2 · 𝑁) ↔ (√‘9) ≤ (√‘(2 · 𝑁))))
4739, 46mpbid 232 . . . . . 6 (𝜑 → (√‘9) ≤ (√‘(2 · 𝑁)))
4813, 47eqbrtrrid 5146 . . . . 5 (𝜑 → 3 ≤ (√‘(2 · 𝑁)))
49 3z 12573 . . . . . 6 3 ∈ ℤ
50 flge 13774 . . . . . 6 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℤ) → (3 ≤ (√‘(2 · 𝑁)) ↔ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
5111, 49, 50sylancl 586 . . . . 5 (𝜑 → (3 ≤ (√‘(2 · 𝑁)) ↔ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
5248, 51mpbid 232 . . . 4 (𝜑 → 3 ≤ (⌊‘(√‘(2 · 𝑁))))
5349eluz1i 12808 . . . 4 ((⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3) ↔ ((⌊‘(√‘(2 · 𝑁))) ∈ ℤ ∧ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
5412, 52, 53sylanbrc 583 . . 3 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3))
55 3nn 12272 . . . . 5 3 ∈ ℕ
56 nndivre 12234 . . . . 5 (((2 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((2 · 𝑁) / 3) ∈ ℝ)
578, 55, 56sylancl 586 . . . 4 (𝜑 → ((2 · 𝑁) / 3) ∈ ℝ)
58 3re 12273 . . . . . . . . 9 3 ∈ ℝ
5958a1i 11 . . . . . . . 8 (𝜑 → 3 ∈ ℝ)
609sqrtgt0d 15386 . . . . . . . 8 (𝜑 → 0 < (√‘(2 · 𝑁)))
61 lemul2 12042 . . . . . . . 8 ((3 ∈ ℝ ∧ (√‘(2 · 𝑁)) ∈ ℝ ∧ ((√‘(2 · 𝑁)) ∈ ℝ ∧ 0 < (√‘(2 · 𝑁)))) → (3 ≤ (√‘(2 · 𝑁)) ↔ ((√‘(2 · 𝑁)) · 3) ≤ ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁)))))
6259, 11, 11, 60, 61syl112anc 1376 . . . . . . 7 (𝜑 → (3 ≤ (√‘(2 · 𝑁)) ↔ ((√‘(2 · 𝑁)) · 3) ≤ ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁)))))
6348, 62mpbid 232 . . . . . 6 (𝜑 → ((√‘(2 · 𝑁)) · 3) ≤ ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))))
64 remsqsqrt 15229 . . . . . . 7 (((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)) → ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) = (2 · 𝑁))
658, 10, 64syl2anc 584 . . . . . 6 (𝜑 → ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) = (2 · 𝑁))
6663, 65breqtrd 5136 . . . . 5 (𝜑 → ((√‘(2 · 𝑁)) · 3) ≤ (2 · 𝑁))
67 3pos 12298 . . . . . . . 8 0 < 3
6858, 67pm3.2i 470 . . . . . . 7 (3 ∈ ℝ ∧ 0 < 3)
6968a1i 11 . . . . . 6 (𝜑 → (3 ∈ ℝ ∧ 0 < 3))
70 lemuldiv 12070 . . . . . 6 (((√‘(2 · 𝑁)) ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((√‘(2 · 𝑁)) · 3) ≤ (2 · 𝑁) ↔ (√‘(2 · 𝑁)) ≤ ((2 · 𝑁) / 3)))
7111, 8, 69, 70syl3anc 1373 . . . . 5 (𝜑 → (((√‘(2 · 𝑁)) · 3) ≤ (2 · 𝑁) ↔ (√‘(2 · 𝑁)) ≤ ((2 · 𝑁) / 3)))
7266, 71mpbid 232 . . . 4 (𝜑 → (√‘(2 · 𝑁)) ≤ ((2 · 𝑁) / 3))
73 flword2 13782 . . . 4 (((√‘(2 · 𝑁)) ∈ ℝ ∧ ((2 · 𝑁) / 3) ∈ ℝ ∧ (√‘(2 · 𝑁)) ≤ ((2 · 𝑁) / 3)) → (⌊‘((2 · 𝑁) / 3)) ∈ (ℤ‘(⌊‘(√‘(2 · 𝑁)))))
7411, 57, 72, 73syl3anc 1373 . . 3 (𝜑 → (⌊‘((2 · 𝑁) / 3)) ∈ (ℤ‘(⌊‘(√‘(2 · 𝑁)))))
75 elfzuzb 13486 . . 3 ((⌊‘(√‘(2 · 𝑁))) ∈ (3...(⌊‘((2 · 𝑁) / 3))) ↔ ((⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3) ∧ (⌊‘((2 · 𝑁) / 3)) ∈ (ℤ‘(⌊‘(√‘(2 · 𝑁))))))
7654, 74, 75sylanbrc 583 . 2 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ (3...(⌊‘((2 · 𝑁) / 3))))
77 bpos.5 . 2 𝑀 = (⌊‘(√‘(2 · 𝑁)))
78 bpos.4 . . 3 𝐾 = (⌊‘((2 · 𝑁) / 3))
7978oveq2i 7401 . 2 (3...𝐾) = (3...(⌊‘((2 · 𝑁) / 3)))
8076, 77, 793eltr4g 2846 1 (𝜑𝑀 ∈ (3...𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  ifcif 4491   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216   / cdiv 11842  cn 12193  2c2 12248  3c3 12249  5c5 12251  9c9 12255  cz 12536  cdc 12656  cuz 12800  ...cfz 13475  cfl 13759  cexp 14033  Ccbc 14274  csqrt 15206  cprime 16648   pCnt cpc 16814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fl 13761  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208
This theorem is referenced by:  bposlem6  27207
  Copyright terms: Public domain W3C validator