Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmxrge0 Structured version   Visualization version   GIF version

Theorem lmxrge0 31804
Description: Express "sequence 𝐹 converges to plus infinity" (i.e. diverges), for a sequence of nonnegative extended real numbers. (Contributed by Thierry Arnoux, 2-Aug-2017.)
Hypotheses
Ref Expression
lmxrge0.j 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
lmxrge0.6 (𝜑𝐹:ℕ⟶(0[,]+∞))
lmxrge0.7 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = 𝐴)
Assertion
Ref Expression
lmxrge0 (𝜑 → (𝐹(⇝𝑡𝐽)+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
Distinct variable groups:   𝑥,𝑗,𝐴   𝑗,𝑘,𝐹,𝑥   𝑘,𝐽,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑘)   𝐽(𝑗)

Proof of Theorem lmxrge0
Dummy variables 𝑎 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmxrge0.j . . . . . . 7 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
2 eqid 2738 . . . . . . . 8 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
3 xrstopn 22267 . . . . . . . 8 (ordTop‘ ≤ ) = (TopOpen‘ℝ*𝑠)
42, 3resstopn 22245 . . . . . . 7 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
51, 4eqtr4i 2769 . . . . . 6 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
6 letopon 22264 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
7 iccssxr 13091 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
8 resttopon 22220 . . . . . . 7 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
96, 7, 8mp2an 688 . . . . . 6 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
105, 9eqeltri 2835 . . . . 5 𝐽 ∈ (TopOn‘(0[,]+∞))
1110a1i 11 . . . 4 (𝜑𝐽 ∈ (TopOn‘(0[,]+∞)))
12 nnuz 12550 . . . 4 ℕ = (ℤ‘1)
13 1zzd 12281 . . . 4 (𝜑 → 1 ∈ ℤ)
14 lmxrge0.6 . . . 4 (𝜑𝐹:ℕ⟶(0[,]+∞))
15 lmxrge0.7 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = 𝐴)
1611, 12, 13, 14, 15lmbrf 22319 . . 3 (𝜑 → (𝐹(⇝𝑡𝐽)+∞ ↔ (+∞ ∈ (0[,]+∞) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))))
17 0xr 10953 . . . . 5 0 ∈ ℝ*
18 pnfxr 10960 . . . . 5 +∞ ∈ ℝ*
19 0lepnf 12797 . . . . 5 0 ≤ +∞
20 ubicc2 13126 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
2117, 18, 19, 20mp3an 1459 . . . 4 +∞ ∈ (0[,]+∞)
2221biantrur 530 . . 3 (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) ↔ (+∞ ∈ (0[,]+∞) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)))
2316, 22bitr4di 288 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)+∞ ↔ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)))
24 rexr 10952 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
2518a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ → +∞ ∈ ℝ*)
26 ltpnf 12785 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 < +∞)
27 ubioc1 13061 . . . . . . . . . 10 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 < +∞) → +∞ ∈ (𝑥(,]+∞))
2824, 25, 26, 27syl3anc 1369 . . . . . . . . 9 (𝑥 ∈ ℝ → +∞ ∈ (𝑥(,]+∞))
29 0ltpnf 12787 . . . . . . . . . 10 0 < +∞
30 ubioc1 13061 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞) → +∞ ∈ (0(,]+∞))
3117, 18, 29, 30mp3an 1459 . . . . . . . . 9 +∞ ∈ (0(,]+∞)
3228, 31jctir 520 . . . . . . . 8 (𝑥 ∈ ℝ → (+∞ ∈ (𝑥(,]+∞) ∧ +∞ ∈ (0(,]+∞)))
33 elin 3899 . . . . . . . 8 (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) ↔ (+∞ ∈ (𝑥(,]+∞) ∧ +∞ ∈ (0(,]+∞)))
3432, 33sylibr 233 . . . . . . 7 (𝑥 ∈ ℝ → +∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)))
3534ad2antlr 723 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)) → +∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)))
36 letop 22265 . . . . . . . . . . 11 (ordTop‘ ≤ ) ∈ Top
37 ovex 7288 . . . . . . . . . . 11 (0[,]+∞) ∈ V
38 iocpnfordt 22274 . . . . . . . . . . . 12 (𝑥(,]+∞) ∈ (ordTop‘ ≤ )
39 iocpnfordt 22274 . . . . . . . . . . . 12 (0(,]+∞) ∈ (ordTop‘ ≤ )
40 inopn 21956 . . . . . . . . . . . 12 (((ordTop‘ ≤ ) ∈ Top ∧ (𝑥(,]+∞) ∈ (ordTop‘ ≤ ) ∧ (0(,]+∞) ∈ (ordTop‘ ≤ )) → ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ))
4136, 38, 39, 40mp3an 1459 . . . . . . . . . . 11 ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ )
42 elrestr 17056 . . . . . . . . . . 11 (((ordTop‘ ≤ ) ∈ Top ∧ (0[,]+∞) ∈ V ∧ ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ )) → (((𝑥(,]+∞) ∩ (0(,]+∞)) ∩ (0[,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
4336, 37, 41, 42mp3an 1459 . . . . . . . . . 10 (((𝑥(,]+∞) ∩ (0(,]+∞)) ∩ (0[,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞))
44 inss2 4160 . . . . . . . . . . . . 13 ((𝑥(,]+∞) ∩ (0(,]+∞)) ⊆ (0(,]+∞)
45 iocssicc 13098 . . . . . . . . . . . . 13 (0(,]+∞) ⊆ (0[,]+∞)
4644, 45sstri 3926 . . . . . . . . . . . 12 ((𝑥(,]+∞) ∩ (0(,]+∞)) ⊆ (0[,]+∞)
47 sseqin2 4146 . . . . . . . . . . . 12 (((𝑥(,]+∞) ∩ (0(,]+∞)) ⊆ (0[,]+∞) ↔ ((0[,]+∞) ∩ ((𝑥(,]+∞) ∩ (0(,]+∞))) = ((𝑥(,]+∞) ∩ (0(,]+∞)))
4846, 47mpbi 229 . . . . . . . . . . 11 ((0[,]+∞) ∩ ((𝑥(,]+∞) ∩ (0(,]+∞))) = ((𝑥(,]+∞) ∩ (0(,]+∞))
49 incom 4131 . . . . . . . . . . 11 ((0[,]+∞) ∩ ((𝑥(,]+∞) ∩ (0(,]+∞))) = (((𝑥(,]+∞) ∩ (0(,]+∞)) ∩ (0[,]+∞))
5048, 49eqtr3i 2768 . . . . . . . . . 10 ((𝑥(,]+∞) ∩ (0(,]+∞)) = (((𝑥(,]+∞) ∩ (0(,]+∞)) ∩ (0[,]+∞))
5143, 50, 53eltr4i 2852 . . . . . . . . 9 ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ 𝐽
5251a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ 𝐽)
53 eleq2 2827 . . . . . . . . . . 11 (𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞)) → (+∞ ∈ 𝑎 ↔ +∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞))))
5453adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → (+∞ ∈ 𝑎 ↔ +∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞))))
5554biimprd 247 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → +∞ ∈ 𝑎))
56 simp-5r 782 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝑥 ∈ ℝ)
5756rexrd 10956 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝑥 ∈ ℝ*)
58 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝐴𝑎)
59 simp-4r 780 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞)))
6058, 59eleqtrd 2841 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝐴 ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)))
61 elin 3899 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) ↔ (𝐴 ∈ (𝑥(,]+∞) ∧ 𝐴 ∈ (0(,]+∞)))
6261simplbi 497 . . . . . . . . . . . . . . 15 (𝐴 ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → 𝐴 ∈ (𝑥(,]+∞))
6360, 62syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝐴 ∈ (𝑥(,]+∞))
64 elioc1 13050 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (𝑥(,]+∞) ↔ (𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞)))
6518, 64mpan2 687 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* → (𝐴 ∈ (𝑥(,]+∞) ↔ (𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞)))
6665biimpa 476 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝐴 ∈ (𝑥(,]+∞)) → (𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞))
6766simp2d 1141 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝐴 ∈ (𝑥(,]+∞)) → 𝑥 < 𝐴)
6857, 63, 67syl2anc 583 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝑥 < 𝐴)
6968ex 412 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (𝐴𝑎𝑥 < 𝐴))
7069ralimdva 3102 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑙)𝐴𝑎 → ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴))
7170reximdva 3202 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → (∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴))
72 fveq2 6756 . . . . . . . . . . . 12 (𝑗 = 𝑙 → (ℤ𝑗) = (ℤ𝑙))
7372raleqdv 3339 . . . . . . . . . . 11 (𝑗 = 𝑙 → (∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 ↔ ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴))
7473cbvrexvw 3373 . . . . . . . . . 10 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 ↔ ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴)
7571, 74syl6ibr 251 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → (∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
7655, 75imim12d 81 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → ((+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) → (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)))
7752, 76rspcimdv 3541 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) → (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)))
7877imp 406 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)) → (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
7935, 78mpd 15 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)
8079ex 412 . . . 4 ((𝜑𝑥 ∈ ℝ) → (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
8180ralrimdva 3112 . . 3 (𝜑 → (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
82 simplll 771 . . . . . 6 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → 𝜑)
83 simpllr 772 . . . . . . 7 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → 𝑎𝐽)
84 simpr 484 . . . . . . 7 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → +∞ ∈ 𝑎)
851pnfneige0 31803 . . . . . . 7 ((𝑎𝐽 ∧ +∞ ∈ 𝑎) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎)
8683, 84, 85syl2anc 583 . . . . . 6 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎)
87 simplr 765 . . . . . 6 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)
88 r19.29r 3184 . . . . . . . 8 ((∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) → ∃𝑥 ∈ ℝ ((𝑥(,]+∞) ⊆ 𝑎 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
89 simp-4l 779 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → 𝜑)
90 uznnssnn 12564 . . . . . . . . . . . . . . . . 17 (𝑙 ∈ ℕ → (ℤ𝑙) ⊆ ℕ)
9190ad2antlr 723 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (ℤ𝑙) ⊆ ℕ)
92 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → 𝑘 ∈ (ℤ𝑙))
9391, 92sseldd 3918 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → 𝑘 ∈ ℕ)
9489, 93jca 511 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (𝜑𝑘 ∈ ℕ))
95 simp-4r 780 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → 𝑥 ∈ ℝ)
96 simpllr 772 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (𝑥(,]+∞) ⊆ 𝑎)
97 simplr 765 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑥 < 𝐴) → (𝑥(,]+∞) ⊆ 𝑎)
98 simplr 765 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝑥 ∈ ℝ)
9998rexrd 10956 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝑥 ∈ ℝ*)
10014ffvelrnda 6943 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (0[,]+∞))
10115, 100eqeltrrd 2840 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
1027, 101sselid 3915 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ*)
103102ad2antrr 722 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝐴 ∈ ℝ*)
104 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝑥 < 𝐴)
105 pnfge 12795 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
106103, 105syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝐴 ≤ +∞)
10765biimpar 477 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞)) → 𝐴 ∈ (𝑥(,]+∞))
10899, 103, 104, 106, 107syl13anc 1370 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝐴 ∈ (𝑥(,]+∞))
109108adantlr 711 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑥 < 𝐴) → 𝐴 ∈ (𝑥(,]+∞))
11097, 109sseldd 3918 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑥 < 𝐴) → 𝐴𝑎)
111110ex 412 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) → (𝑥 < 𝐴𝐴𝑎))
11294, 95, 96, 111syl21anc 834 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (𝑥 < 𝐴𝐴𝑎))
113112ralimdva 3102 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴 → ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
114113reximdva 3202 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) → (∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
11574, 114syl5bi 241 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
116115expimpd 453 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (((𝑥(,]+∞) ⊆ 𝑎 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
117116rexlimdva 3212 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ ((𝑥(,]+∞) ⊆ 𝑎 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
11888, 117syl5 34 . . . . . . 7 (𝜑 → ((∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
119118imp 406 . . . . . 6 ((𝜑 ∧ (∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)
12082, 86, 87, 119syl12anc 833 . . . . 5 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)
121120exp31 419 . . . 4 ((𝜑𝑎𝐽) → (∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 → (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)))
122121ralrimdva 3112 . . 3 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 → ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)))
12381, 122impbid 211 . 2 (𝜑 → (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
12423, 123bitrd 278 1 (𝜑 → (𝐹(⇝𝑡𝐽)+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cn 11903  cuz 12511  (,]cioc 13009  [,]cicc 13011  s cress 16867  t crest 17048  TopOpenctopn 17049  ordTopcordt 17127  *𝑠cxrs 17128  Topctop 21950  TopOnctopon 21967  𝑡clm 22285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-tset 16907  df-ple 16908  df-ds 16910  df-rest 17050  df-topn 17051  df-topgen 17071  df-ordt 17129  df-xrs 17130  df-ps 18199  df-tsr 18200  df-top 21951  df-topon 21968  df-bases 22004  df-lm 22288
This theorem is referenced by:  lmdvglim  31806
  Copyright terms: Public domain W3C validator