Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmxrge0 Structured version   Visualization version   GIF version

Theorem lmxrge0 33976
Description: Express "sequence 𝐹 converges to plus infinity" (i.e. diverges), for a sequence of nonnegative extended real numbers. (Contributed by Thierry Arnoux, 2-Aug-2017.)
Hypotheses
Ref Expression
lmxrge0.j 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
lmxrge0.6 (𝜑𝐹:ℕ⟶(0[,]+∞))
lmxrge0.7 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = 𝐴)
Assertion
Ref Expression
lmxrge0 (𝜑 → (𝐹(⇝𝑡𝐽)+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
Distinct variable groups:   𝑥,𝑗,𝐴   𝑗,𝑘,𝐹,𝑥   𝑘,𝐽,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑘)   𝐽(𝑗)

Proof of Theorem lmxrge0
Dummy variables 𝑎 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmxrge0.j . . . . . . 7 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
2 eqid 2733 . . . . . . . 8 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
3 xrstopn 23133 . . . . . . . 8 (ordTop‘ ≤ ) = (TopOpen‘ℝ*𝑠)
42, 3resstopn 23111 . . . . . . 7 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
51, 4eqtr4i 2759 . . . . . 6 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
6 letopon 23130 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
7 iccssxr 13340 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
8 resttopon 23086 . . . . . . 7 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
96, 7, 8mp2an 692 . . . . . 6 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
105, 9eqeltri 2829 . . . . 5 𝐽 ∈ (TopOn‘(0[,]+∞))
1110a1i 11 . . . 4 (𝜑𝐽 ∈ (TopOn‘(0[,]+∞)))
12 nnuz 12785 . . . 4 ℕ = (ℤ‘1)
13 1zzd 12513 . . . 4 (𝜑 → 1 ∈ ℤ)
14 lmxrge0.6 . . . 4 (𝜑𝐹:ℕ⟶(0[,]+∞))
15 lmxrge0.7 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = 𝐴)
1611, 12, 13, 14, 15lmbrf 23185 . . 3 (𝜑 → (𝐹(⇝𝑡𝐽)+∞ ↔ (+∞ ∈ (0[,]+∞) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))))
17 0xr 11169 . . . . 5 0 ∈ ℝ*
18 pnfxr 11176 . . . . 5 +∞ ∈ ℝ*
19 0lepnf 13042 . . . . 5 0 ≤ +∞
20 ubicc2 13375 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
2117, 18, 19, 20mp3an 1463 . . . 4 +∞ ∈ (0[,]+∞)
2221biantrur 530 . . 3 (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) ↔ (+∞ ∈ (0[,]+∞) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)))
2316, 22bitr4di 289 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)+∞ ↔ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)))
24 rexr 11168 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
2518a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ → +∞ ∈ ℝ*)
26 ltpnf 13029 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 < +∞)
27 ubioc1 13309 . . . . . . . . . 10 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 < +∞) → +∞ ∈ (𝑥(,]+∞))
2824, 25, 26, 27syl3anc 1373 . . . . . . . . 9 (𝑥 ∈ ℝ → +∞ ∈ (𝑥(,]+∞))
29 0ltpnf 13031 . . . . . . . . . 10 0 < +∞
30 ubioc1 13309 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞) → +∞ ∈ (0(,]+∞))
3117, 18, 29, 30mp3an 1463 . . . . . . . . 9 +∞ ∈ (0(,]+∞)
3228, 31jctir 520 . . . . . . . 8 (𝑥 ∈ ℝ → (+∞ ∈ (𝑥(,]+∞) ∧ +∞ ∈ (0(,]+∞)))
33 elin 3915 . . . . . . . 8 (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) ↔ (+∞ ∈ (𝑥(,]+∞) ∧ +∞ ∈ (0(,]+∞)))
3432, 33sylibr 234 . . . . . . 7 (𝑥 ∈ ℝ → +∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)))
3534ad2antlr 727 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)) → +∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)))
36 letop 23131 . . . . . . . . . . 11 (ordTop‘ ≤ ) ∈ Top
37 ovex 7388 . . . . . . . . . . 11 (0[,]+∞) ∈ V
38 iocpnfordt 23140 . . . . . . . . . . . 12 (𝑥(,]+∞) ∈ (ordTop‘ ≤ )
39 iocpnfordt 23140 . . . . . . . . . . . 12 (0(,]+∞) ∈ (ordTop‘ ≤ )
40 inopn 22824 . . . . . . . . . . . 12 (((ordTop‘ ≤ ) ∈ Top ∧ (𝑥(,]+∞) ∈ (ordTop‘ ≤ ) ∧ (0(,]+∞) ∈ (ordTop‘ ≤ )) → ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ))
4136, 38, 39, 40mp3an 1463 . . . . . . . . . . 11 ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ )
42 elrestr 17342 . . . . . . . . . . 11 (((ordTop‘ ≤ ) ∈ Top ∧ (0[,]+∞) ∈ V ∧ ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ )) → (((𝑥(,]+∞) ∩ (0(,]+∞)) ∩ (0[,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
4336, 37, 41, 42mp3an 1463 . . . . . . . . . 10 (((𝑥(,]+∞) ∩ (0(,]+∞)) ∩ (0[,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞))
44 inss2 4189 . . . . . . . . . . . . 13 ((𝑥(,]+∞) ∩ (0(,]+∞)) ⊆ (0(,]+∞)
45 iocssicc 13347 . . . . . . . . . . . . 13 (0(,]+∞) ⊆ (0[,]+∞)
4644, 45sstri 3941 . . . . . . . . . . . 12 ((𝑥(,]+∞) ∩ (0(,]+∞)) ⊆ (0[,]+∞)
47 sseqin2 4174 . . . . . . . . . . . 12 (((𝑥(,]+∞) ∩ (0(,]+∞)) ⊆ (0[,]+∞) ↔ ((0[,]+∞) ∩ ((𝑥(,]+∞) ∩ (0(,]+∞))) = ((𝑥(,]+∞) ∩ (0(,]+∞)))
4846, 47mpbi 230 . . . . . . . . . . 11 ((0[,]+∞) ∩ ((𝑥(,]+∞) ∩ (0(,]+∞))) = ((𝑥(,]+∞) ∩ (0(,]+∞))
49 incom 4160 . . . . . . . . . . 11 ((0[,]+∞) ∩ ((𝑥(,]+∞) ∩ (0(,]+∞))) = (((𝑥(,]+∞) ∩ (0(,]+∞)) ∩ (0[,]+∞))
5048, 49eqtr3i 2758 . . . . . . . . . 10 ((𝑥(,]+∞) ∩ (0(,]+∞)) = (((𝑥(,]+∞) ∩ (0(,]+∞)) ∩ (0[,]+∞))
5143, 50, 53eltr4i 2846 . . . . . . . . 9 ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ 𝐽
5251a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ 𝐽)
53 eleq2 2822 . . . . . . . . . . 11 (𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞)) → (+∞ ∈ 𝑎 ↔ +∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞))))
5453adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → (+∞ ∈ 𝑎 ↔ +∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞))))
5554biimprd 248 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → +∞ ∈ 𝑎))
56 simp-5r 785 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝑥 ∈ ℝ)
5756rexrd 11172 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝑥 ∈ ℝ*)
58 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝐴𝑎)
59 simp-4r 783 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞)))
6058, 59eleqtrd 2835 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝐴 ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)))
61 elin 3915 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) ↔ (𝐴 ∈ (𝑥(,]+∞) ∧ 𝐴 ∈ (0(,]+∞)))
6261simplbi 497 . . . . . . . . . . . . . . 15 (𝐴 ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → 𝐴 ∈ (𝑥(,]+∞))
6360, 62syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝐴 ∈ (𝑥(,]+∞))
64 elioc1 13297 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (𝑥(,]+∞) ↔ (𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞)))
6518, 64mpan2 691 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* → (𝐴 ∈ (𝑥(,]+∞) ↔ (𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞)))
6665biimpa 476 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝐴 ∈ (𝑥(,]+∞)) → (𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞))
6766simp2d 1143 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝐴 ∈ (𝑥(,]+∞)) → 𝑥 < 𝐴)
6857, 63, 67syl2anc 584 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝑥 < 𝐴)
6968ex 412 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (𝐴𝑎𝑥 < 𝐴))
7069ralimdva 3146 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑙)𝐴𝑎 → ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴))
7170reximdva 3147 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → (∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴))
72 fveq2 6831 . . . . . . . . . . . 12 (𝑗 = 𝑙 → (ℤ𝑗) = (ℤ𝑙))
7372raleqdv 3294 . . . . . . . . . . 11 (𝑗 = 𝑙 → (∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 ↔ ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴))
7473cbvrexvw 3213 . . . . . . . . . 10 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 ↔ ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴)
7571, 74imbitrrdi 252 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → (∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
7655, 75imim12d 81 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → ((+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) → (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)))
7752, 76rspcimdv 3564 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) → (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)))
7877imp 406 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)) → (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
7935, 78mpd 15 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)
8079ex 412 . . . 4 ((𝜑𝑥 ∈ ℝ) → (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
8180ralrimdva 3134 . . 3 (𝜑 → (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
82 simplll 774 . . . . . 6 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → 𝜑)
83 simpllr 775 . . . . . . 7 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → 𝑎𝐽)
84 simpr 484 . . . . . . 7 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → +∞ ∈ 𝑎)
851pnfneige0 33975 . . . . . . 7 ((𝑎𝐽 ∧ +∞ ∈ 𝑎) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎)
8683, 84, 85syl2anc 584 . . . . . 6 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎)
87 simplr 768 . . . . . 6 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)
88 r19.29r 3098 . . . . . . . 8 ((∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) → ∃𝑥 ∈ ℝ ((𝑥(,]+∞) ⊆ 𝑎 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
89 simp-4l 782 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → 𝜑)
90 uznnssnn 12803 . . . . . . . . . . . . . . . . 17 (𝑙 ∈ ℕ → (ℤ𝑙) ⊆ ℕ)
9190ad2antlr 727 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (ℤ𝑙) ⊆ ℕ)
92 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → 𝑘 ∈ (ℤ𝑙))
9391, 92sseldd 3932 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → 𝑘 ∈ ℕ)
9489, 93jca 511 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (𝜑𝑘 ∈ ℕ))
95 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → 𝑥 ∈ ℝ)
96 simpllr 775 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (𝑥(,]+∞) ⊆ 𝑎)
97 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑥 < 𝐴) → (𝑥(,]+∞) ⊆ 𝑎)
98 simplr 768 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝑥 ∈ ℝ)
9998rexrd 11172 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝑥 ∈ ℝ*)
10014ffvelcdmda 7026 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (0[,]+∞))
10115, 100eqeltrrd 2834 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
1027, 101sselid 3929 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ*)
103102ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝐴 ∈ ℝ*)
104 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝑥 < 𝐴)
105 pnfge 13039 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
106103, 105syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝐴 ≤ +∞)
10765biimpar 477 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞)) → 𝐴 ∈ (𝑥(,]+∞))
10899, 103, 104, 106, 107syl13anc 1374 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝐴 ∈ (𝑥(,]+∞))
109108adantlr 715 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑥 < 𝐴) → 𝐴 ∈ (𝑥(,]+∞))
11097, 109sseldd 3932 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑥 < 𝐴) → 𝐴𝑎)
111110ex 412 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) → (𝑥 < 𝐴𝐴𝑎))
11294, 95, 96, 111syl21anc 837 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (𝑥 < 𝐴𝐴𝑎))
113112ralimdva 3146 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴 → ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
114113reximdva 3147 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) → (∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
11574, 114biimtrid 242 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
116115expimpd 453 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (((𝑥(,]+∞) ⊆ 𝑎 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
117116rexlimdva 3135 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ ((𝑥(,]+∞) ⊆ 𝑎 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
11888, 117syl5 34 . . . . . . 7 (𝜑 → ((∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
119118imp 406 . . . . . 6 ((𝜑 ∧ (∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)
12082, 86, 87, 119syl12anc 836 . . . . 5 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)
121120exp31 419 . . . 4 ((𝜑𝑎𝐽) → (∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 → (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)))
122121ralrimdva 3134 . . 3 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 → ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)))
12381, 122impbid 212 . 2 (𝜑 → (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
12423, 123bitrd 279 1 (𝜑 → (𝐹(⇝𝑡𝐽)+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3049  wrex 3058  Vcvv 3438  cin 3898  wss 3899   class class class wbr 5095  wf 6485  cfv 6489  (class class class)co 7355  cr 11015  0cc0 11016  1c1 11017  +∞cpnf 11153  *cxr 11155   < clt 11156  cle 11157  cn 12135  cuz 12742  (,]cioc 13256  [,]cicc 13258  s cress 17151  t crest 17334  TopOpenctopn 17335  ordTopcordt 17413  *𝑠cxrs 17414  Topctop 22818  TopOnctopon 22835  𝑡clm 23151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-pm 8762  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fi 9305  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-ioo 13259  df-ioc 13260  df-ico 13261  df-icc 13262  df-fz 13418  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-tset 17190  df-ple 17191  df-ds 17193  df-rest 17336  df-topn 17337  df-topgen 17357  df-ordt 17415  df-xrs 17416  df-ps 18482  df-tsr 18483  df-top 22819  df-topon 22836  df-bases 22871  df-lm 23154
This theorem is referenced by:  lmdvglim  33978
  Copyright terms: Public domain W3C validator