Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmxrge0 Structured version   Visualization version   GIF version

Theorem lmxrge0 33898
Description: Express "sequence 𝐹 converges to plus infinity" (i.e. diverges), for a sequence of nonnegative extended real numbers. (Contributed by Thierry Arnoux, 2-Aug-2017.)
Hypotheses
Ref Expression
lmxrge0.j 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
lmxrge0.6 (𝜑𝐹:ℕ⟶(0[,]+∞))
lmxrge0.7 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = 𝐴)
Assertion
Ref Expression
lmxrge0 (𝜑 → (𝐹(⇝𝑡𝐽)+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
Distinct variable groups:   𝑥,𝑗,𝐴   𝑗,𝑘,𝐹,𝑥   𝑘,𝐽,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑘)   𝐽(𝑗)

Proof of Theorem lmxrge0
Dummy variables 𝑎 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmxrge0.j . . . . . . 7 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
2 eqid 2740 . . . . . . . 8 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
3 xrstopn 23237 . . . . . . . 8 (ordTop‘ ≤ ) = (TopOpen‘ℝ*𝑠)
42, 3resstopn 23215 . . . . . . 7 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
51, 4eqtr4i 2771 . . . . . 6 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
6 letopon 23234 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
7 iccssxr 13490 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
8 resttopon 23190 . . . . . . 7 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
96, 7, 8mp2an 691 . . . . . 6 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
105, 9eqeltri 2840 . . . . 5 𝐽 ∈ (TopOn‘(0[,]+∞))
1110a1i 11 . . . 4 (𝜑𝐽 ∈ (TopOn‘(0[,]+∞)))
12 nnuz 12946 . . . 4 ℕ = (ℤ‘1)
13 1zzd 12674 . . . 4 (𝜑 → 1 ∈ ℤ)
14 lmxrge0.6 . . . 4 (𝜑𝐹:ℕ⟶(0[,]+∞))
15 lmxrge0.7 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = 𝐴)
1611, 12, 13, 14, 15lmbrf 23289 . . 3 (𝜑 → (𝐹(⇝𝑡𝐽)+∞ ↔ (+∞ ∈ (0[,]+∞) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))))
17 0xr 11337 . . . . 5 0 ∈ ℝ*
18 pnfxr 11344 . . . . 5 +∞ ∈ ℝ*
19 0lepnf 13195 . . . . 5 0 ≤ +∞
20 ubicc2 13525 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
2117, 18, 19, 20mp3an 1461 . . . 4 +∞ ∈ (0[,]+∞)
2221biantrur 530 . . 3 (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) ↔ (+∞ ∈ (0[,]+∞) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)))
2316, 22bitr4di 289 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)+∞ ↔ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)))
24 rexr 11336 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
2518a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ → +∞ ∈ ℝ*)
26 ltpnf 13183 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 < +∞)
27 ubioc1 13460 . . . . . . . . . 10 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 < +∞) → +∞ ∈ (𝑥(,]+∞))
2824, 25, 26, 27syl3anc 1371 . . . . . . . . 9 (𝑥 ∈ ℝ → +∞ ∈ (𝑥(,]+∞))
29 0ltpnf 13185 . . . . . . . . . 10 0 < +∞
30 ubioc1 13460 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞) → +∞ ∈ (0(,]+∞))
3117, 18, 29, 30mp3an 1461 . . . . . . . . 9 +∞ ∈ (0(,]+∞)
3228, 31jctir 520 . . . . . . . 8 (𝑥 ∈ ℝ → (+∞ ∈ (𝑥(,]+∞) ∧ +∞ ∈ (0(,]+∞)))
33 elin 3992 . . . . . . . 8 (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) ↔ (+∞ ∈ (𝑥(,]+∞) ∧ +∞ ∈ (0(,]+∞)))
3432, 33sylibr 234 . . . . . . 7 (𝑥 ∈ ℝ → +∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)))
3534ad2antlr 726 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)) → +∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)))
36 letop 23235 . . . . . . . . . . 11 (ordTop‘ ≤ ) ∈ Top
37 ovex 7481 . . . . . . . . . . 11 (0[,]+∞) ∈ V
38 iocpnfordt 23244 . . . . . . . . . . . 12 (𝑥(,]+∞) ∈ (ordTop‘ ≤ )
39 iocpnfordt 23244 . . . . . . . . . . . 12 (0(,]+∞) ∈ (ordTop‘ ≤ )
40 inopn 22926 . . . . . . . . . . . 12 (((ordTop‘ ≤ ) ∈ Top ∧ (𝑥(,]+∞) ∈ (ordTop‘ ≤ ) ∧ (0(,]+∞) ∈ (ordTop‘ ≤ )) → ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ))
4136, 38, 39, 40mp3an 1461 . . . . . . . . . . 11 ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ )
42 elrestr 17488 . . . . . . . . . . 11 (((ordTop‘ ≤ ) ∈ Top ∧ (0[,]+∞) ∈ V ∧ ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ )) → (((𝑥(,]+∞) ∩ (0(,]+∞)) ∩ (0[,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
4336, 37, 41, 42mp3an 1461 . . . . . . . . . 10 (((𝑥(,]+∞) ∩ (0(,]+∞)) ∩ (0[,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞))
44 inss2 4259 . . . . . . . . . . . . 13 ((𝑥(,]+∞) ∩ (0(,]+∞)) ⊆ (0(,]+∞)
45 iocssicc 13497 . . . . . . . . . . . . 13 (0(,]+∞) ⊆ (0[,]+∞)
4644, 45sstri 4018 . . . . . . . . . . . 12 ((𝑥(,]+∞) ∩ (0(,]+∞)) ⊆ (0[,]+∞)
47 sseqin2 4244 . . . . . . . . . . . 12 (((𝑥(,]+∞) ∩ (0(,]+∞)) ⊆ (0[,]+∞) ↔ ((0[,]+∞) ∩ ((𝑥(,]+∞) ∩ (0(,]+∞))) = ((𝑥(,]+∞) ∩ (0(,]+∞)))
4846, 47mpbi 230 . . . . . . . . . . 11 ((0[,]+∞) ∩ ((𝑥(,]+∞) ∩ (0(,]+∞))) = ((𝑥(,]+∞) ∩ (0(,]+∞))
49 incom 4230 . . . . . . . . . . 11 ((0[,]+∞) ∩ ((𝑥(,]+∞) ∩ (0(,]+∞))) = (((𝑥(,]+∞) ∩ (0(,]+∞)) ∩ (0[,]+∞))
5048, 49eqtr3i 2770 . . . . . . . . . 10 ((𝑥(,]+∞) ∩ (0(,]+∞)) = (((𝑥(,]+∞) ∩ (0(,]+∞)) ∩ (0[,]+∞))
5143, 50, 53eltr4i 2857 . . . . . . . . 9 ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ 𝐽
5251a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ 𝐽)
53 eleq2 2833 . . . . . . . . . . 11 (𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞)) → (+∞ ∈ 𝑎 ↔ +∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞))))
5453adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → (+∞ ∈ 𝑎 ↔ +∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞))))
5554biimprd 248 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → +∞ ∈ 𝑎))
56 simp-5r 785 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝑥 ∈ ℝ)
5756rexrd 11340 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝑥 ∈ ℝ*)
58 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝐴𝑎)
59 simp-4r 783 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞)))
6058, 59eleqtrd 2846 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝐴 ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)))
61 elin 3992 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) ↔ (𝐴 ∈ (𝑥(,]+∞) ∧ 𝐴 ∈ (0(,]+∞)))
6261simplbi 497 . . . . . . . . . . . . . . 15 (𝐴 ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → 𝐴 ∈ (𝑥(,]+∞))
6360, 62syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝐴 ∈ (𝑥(,]+∞))
64 elioc1 13449 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (𝑥(,]+∞) ↔ (𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞)))
6518, 64mpan2 690 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* → (𝐴 ∈ (𝑥(,]+∞) ↔ (𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞)))
6665biimpa 476 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝐴 ∈ (𝑥(,]+∞)) → (𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞))
6766simp2d 1143 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝐴 ∈ (𝑥(,]+∞)) → 𝑥 < 𝐴)
6857, 63, 67syl2anc 583 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝑥 < 𝐴)
6968ex 412 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (𝐴𝑎𝑥 < 𝐴))
7069ralimdva 3173 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑙)𝐴𝑎 → ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴))
7170reximdva 3174 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → (∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴))
72 fveq2 6920 . . . . . . . . . . . 12 (𝑗 = 𝑙 → (ℤ𝑗) = (ℤ𝑙))
7372raleqdv 3334 . . . . . . . . . . 11 (𝑗 = 𝑙 → (∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 ↔ ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴))
7473cbvrexvw 3244 . . . . . . . . . 10 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 ↔ ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴)
7571, 74imbitrrdi 252 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → (∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
7655, 75imim12d 81 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → ((+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) → (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)))
7752, 76rspcimdv 3625 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) → (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)))
7877imp 406 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)) → (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
7935, 78mpd 15 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)
8079ex 412 . . . 4 ((𝜑𝑥 ∈ ℝ) → (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
8180ralrimdva 3160 . . 3 (𝜑 → (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
82 simplll 774 . . . . . 6 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → 𝜑)
83 simpllr 775 . . . . . . 7 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → 𝑎𝐽)
84 simpr 484 . . . . . . 7 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → +∞ ∈ 𝑎)
851pnfneige0 33897 . . . . . . 7 ((𝑎𝐽 ∧ +∞ ∈ 𝑎) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎)
8683, 84, 85syl2anc 583 . . . . . 6 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎)
87 simplr 768 . . . . . 6 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)
88 r19.29r 3122 . . . . . . . 8 ((∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) → ∃𝑥 ∈ ℝ ((𝑥(,]+∞) ⊆ 𝑎 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
89 simp-4l 782 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → 𝜑)
90 uznnssnn 12960 . . . . . . . . . . . . . . . . 17 (𝑙 ∈ ℕ → (ℤ𝑙) ⊆ ℕ)
9190ad2antlr 726 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (ℤ𝑙) ⊆ ℕ)
92 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → 𝑘 ∈ (ℤ𝑙))
9391, 92sseldd 4009 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → 𝑘 ∈ ℕ)
9489, 93jca 511 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (𝜑𝑘 ∈ ℕ))
95 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → 𝑥 ∈ ℝ)
96 simpllr 775 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (𝑥(,]+∞) ⊆ 𝑎)
97 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑥 < 𝐴) → (𝑥(,]+∞) ⊆ 𝑎)
98 simplr 768 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝑥 ∈ ℝ)
9998rexrd 11340 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝑥 ∈ ℝ*)
10014ffvelcdmda 7118 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (0[,]+∞))
10115, 100eqeltrrd 2845 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
1027, 101sselid 4006 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ*)
103102ad2antrr 725 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝐴 ∈ ℝ*)
104 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝑥 < 𝐴)
105 pnfge 13193 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
106103, 105syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝐴 ≤ +∞)
10765biimpar 477 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞)) → 𝐴 ∈ (𝑥(,]+∞))
10899, 103, 104, 106, 107syl13anc 1372 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝐴 ∈ (𝑥(,]+∞))
109108adantlr 714 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑥 < 𝐴) → 𝐴 ∈ (𝑥(,]+∞))
11097, 109sseldd 4009 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑥 < 𝐴) → 𝐴𝑎)
111110ex 412 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) → (𝑥 < 𝐴𝐴𝑎))
11294, 95, 96, 111syl21anc 837 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (𝑥 < 𝐴𝐴𝑎))
113112ralimdva 3173 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴 → ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
114113reximdva 3174 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) → (∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
11574, 114biimtrid 242 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
116115expimpd 453 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (((𝑥(,]+∞) ⊆ 𝑎 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
117116rexlimdva 3161 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ ((𝑥(,]+∞) ⊆ 𝑎 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
11888, 117syl5 34 . . . . . . 7 (𝜑 → ((∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
119118imp 406 . . . . . 6 ((𝜑 ∧ (∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)
12082, 86, 87, 119syl12anc 836 . . . . 5 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)
121120exp31 419 . . . 4 ((𝜑𝑎𝐽) → (∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 → (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)))
122121ralrimdva 3160 . . 3 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 → ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)))
12381, 122impbid 212 . 2 (𝜑 → (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
12423, 123bitrd 279 1 (𝜑 → (𝐹(⇝𝑡𝐽)+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cn 12293  cuz 12903  (,]cioc 13408  [,]cicc 13410  s cress 17287  t crest 17480  TopOpenctopn 17481  ordTopcordt 17559  *𝑠cxrs 17560  Topctop 22920  TopOnctopon 22937  𝑡clm 23255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-tset 17330  df-ple 17331  df-ds 17333  df-rest 17482  df-topn 17483  df-topgen 17503  df-ordt 17561  df-xrs 17562  df-ps 18636  df-tsr 18637  df-top 22921  df-topon 22938  df-bases 22974  df-lm 23258
This theorem is referenced by:  lmdvglim  33900
  Copyright terms: Public domain W3C validator