Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmxrge0 Structured version   Visualization version   GIF version

Theorem lmxrge0 33929
Description: Express "sequence 𝐹 converges to plus infinity" (i.e. diverges), for a sequence of nonnegative extended real numbers. (Contributed by Thierry Arnoux, 2-Aug-2017.)
Hypotheses
Ref Expression
lmxrge0.j 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
lmxrge0.6 (𝜑𝐹:ℕ⟶(0[,]+∞))
lmxrge0.7 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = 𝐴)
Assertion
Ref Expression
lmxrge0 (𝜑 → (𝐹(⇝𝑡𝐽)+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
Distinct variable groups:   𝑥,𝑗,𝐴   𝑗,𝑘,𝐹,𝑥   𝑘,𝐽,𝑥   𝜑,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑗)   𝐴(𝑘)   𝐽(𝑗)

Proof of Theorem lmxrge0
Dummy variables 𝑎 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmxrge0.j . . . . . . 7 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
2 eqid 2735 . . . . . . . 8 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
3 xrstopn 23144 . . . . . . . 8 (ordTop‘ ≤ ) = (TopOpen‘ℝ*𝑠)
42, 3resstopn 23122 . . . . . . 7 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
51, 4eqtr4i 2761 . . . . . 6 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
6 letopon 23141 . . . . . . 7 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
7 iccssxr 13445 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
8 resttopon 23097 . . . . . . 7 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
96, 7, 8mp2an 692 . . . . . 6 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
105, 9eqeltri 2830 . . . . 5 𝐽 ∈ (TopOn‘(0[,]+∞))
1110a1i 11 . . . 4 (𝜑𝐽 ∈ (TopOn‘(0[,]+∞)))
12 nnuz 12893 . . . 4 ℕ = (ℤ‘1)
13 1zzd 12621 . . . 4 (𝜑 → 1 ∈ ℤ)
14 lmxrge0.6 . . . 4 (𝜑𝐹:ℕ⟶(0[,]+∞))
15 lmxrge0.7 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = 𝐴)
1611, 12, 13, 14, 15lmbrf 23196 . . 3 (𝜑 → (𝐹(⇝𝑡𝐽)+∞ ↔ (+∞ ∈ (0[,]+∞) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))))
17 0xr 11280 . . . . 5 0 ∈ ℝ*
18 pnfxr 11287 . . . . 5 +∞ ∈ ℝ*
19 0lepnf 13147 . . . . 5 0 ≤ +∞
20 ubicc2 13480 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
2117, 18, 19, 20mp3an 1463 . . . 4 +∞ ∈ (0[,]+∞)
2221biantrur 530 . . 3 (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) ↔ (+∞ ∈ (0[,]+∞) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)))
2316, 22bitr4di 289 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)+∞ ↔ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)))
24 rexr 11279 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
2518a1i 11 . . . . . . . . . 10 (𝑥 ∈ ℝ → +∞ ∈ ℝ*)
26 ltpnf 13134 . . . . . . . . . 10 (𝑥 ∈ ℝ → 𝑥 < +∞)
27 ubioc1 13414 . . . . . . . . . 10 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 < +∞) → +∞ ∈ (𝑥(,]+∞))
2824, 25, 26, 27syl3anc 1373 . . . . . . . . 9 (𝑥 ∈ ℝ → +∞ ∈ (𝑥(,]+∞))
29 0ltpnf 13136 . . . . . . . . . 10 0 < +∞
30 ubioc1 13414 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 < +∞) → +∞ ∈ (0(,]+∞))
3117, 18, 29, 30mp3an 1463 . . . . . . . . 9 +∞ ∈ (0(,]+∞)
3228, 31jctir 520 . . . . . . . 8 (𝑥 ∈ ℝ → (+∞ ∈ (𝑥(,]+∞) ∧ +∞ ∈ (0(,]+∞)))
33 elin 3942 . . . . . . . 8 (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) ↔ (+∞ ∈ (𝑥(,]+∞) ∧ +∞ ∈ (0(,]+∞)))
3432, 33sylibr 234 . . . . . . 7 (𝑥 ∈ ℝ → +∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)))
3534ad2antlr 727 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)) → +∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)))
36 letop 23142 . . . . . . . . . . 11 (ordTop‘ ≤ ) ∈ Top
37 ovex 7436 . . . . . . . . . . 11 (0[,]+∞) ∈ V
38 iocpnfordt 23151 . . . . . . . . . . . 12 (𝑥(,]+∞) ∈ (ordTop‘ ≤ )
39 iocpnfordt 23151 . . . . . . . . . . . 12 (0(,]+∞) ∈ (ordTop‘ ≤ )
40 inopn 22835 . . . . . . . . . . . 12 (((ordTop‘ ≤ ) ∈ Top ∧ (𝑥(,]+∞) ∈ (ordTop‘ ≤ ) ∧ (0(,]+∞) ∈ (ordTop‘ ≤ )) → ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ ))
4136, 38, 39, 40mp3an 1463 . . . . . . . . . . 11 ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ )
42 elrestr 17440 . . . . . . . . . . 11 (((ordTop‘ ≤ ) ∈ Top ∧ (0[,]+∞) ∈ V ∧ ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ (ordTop‘ ≤ )) → (((𝑥(,]+∞) ∩ (0(,]+∞)) ∩ (0[,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞)))
4336, 37, 41, 42mp3an 1463 . . . . . . . . . 10 (((𝑥(,]+∞) ∩ (0(,]+∞)) ∩ (0[,]+∞)) ∈ ((ordTop‘ ≤ ) ↾t (0[,]+∞))
44 inss2 4213 . . . . . . . . . . . . 13 ((𝑥(,]+∞) ∩ (0(,]+∞)) ⊆ (0(,]+∞)
45 iocssicc 13452 . . . . . . . . . . . . 13 (0(,]+∞) ⊆ (0[,]+∞)
4644, 45sstri 3968 . . . . . . . . . . . 12 ((𝑥(,]+∞) ∩ (0(,]+∞)) ⊆ (0[,]+∞)
47 sseqin2 4198 . . . . . . . . . . . 12 (((𝑥(,]+∞) ∩ (0(,]+∞)) ⊆ (0[,]+∞) ↔ ((0[,]+∞) ∩ ((𝑥(,]+∞) ∩ (0(,]+∞))) = ((𝑥(,]+∞) ∩ (0(,]+∞)))
4846, 47mpbi 230 . . . . . . . . . . 11 ((0[,]+∞) ∩ ((𝑥(,]+∞) ∩ (0(,]+∞))) = ((𝑥(,]+∞) ∩ (0(,]+∞))
49 incom 4184 . . . . . . . . . . 11 ((0[,]+∞) ∩ ((𝑥(,]+∞) ∩ (0(,]+∞))) = (((𝑥(,]+∞) ∩ (0(,]+∞)) ∩ (0[,]+∞))
5048, 49eqtr3i 2760 . . . . . . . . . 10 ((𝑥(,]+∞) ∩ (0(,]+∞)) = (((𝑥(,]+∞) ∩ (0(,]+∞)) ∩ (0[,]+∞))
5143, 50, 53eltr4i 2847 . . . . . . . . 9 ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ 𝐽
5251a1i 11 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → ((𝑥(,]+∞) ∩ (0(,]+∞)) ∈ 𝐽)
53 eleq2 2823 . . . . . . . . . . 11 (𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞)) → (+∞ ∈ 𝑎 ↔ +∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞))))
5453adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → (+∞ ∈ 𝑎 ↔ +∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞))))
5554biimprd 248 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → +∞ ∈ 𝑎))
56 simp-5r 785 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝑥 ∈ ℝ)
5756rexrd 11283 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝑥 ∈ ℝ*)
58 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝐴𝑎)
59 simp-4r 783 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞)))
6058, 59eleqtrd 2836 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝐴 ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)))
61 elin 3942 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) ↔ (𝐴 ∈ (𝑥(,]+∞) ∧ 𝐴 ∈ (0(,]+∞)))
6261simplbi 497 . . . . . . . . . . . . . . 15 (𝐴 ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → 𝐴 ∈ (𝑥(,]+∞))
6360, 62syl 17 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝐴 ∈ (𝑥(,]+∞))
64 elioc1 13402 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 ∈ (𝑥(,]+∞) ↔ (𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞)))
6518, 64mpan2 691 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ* → (𝐴 ∈ (𝑥(,]+∞) ↔ (𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞)))
6665biimpa 476 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝐴 ∈ (𝑥(,]+∞)) → (𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞))
6766simp2d 1143 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝐴 ∈ (𝑥(,]+∞)) → 𝑥 < 𝐴)
6857, 63, 67syl2anc 584 . . . . . . . . . . . . 13 ((((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) ∧ 𝐴𝑎) → 𝑥 < 𝐴)
6968ex 412 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (𝐴𝑎𝑥 < 𝐴))
7069ralimdva 3152 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) ∧ 𝑙 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑙)𝐴𝑎 → ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴))
7170reximdva 3153 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → (∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴))
72 fveq2 6875 . . . . . . . . . . . 12 (𝑗 = 𝑙 → (ℤ𝑗) = (ℤ𝑙))
7372raleqdv 3305 . . . . . . . . . . 11 (𝑗 = 𝑙 → (∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 ↔ ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴))
7473cbvrexvw 3221 . . . . . . . . . 10 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 ↔ ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴)
7571, 74imbitrrdi 252 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → (∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
7655, 75imim12d 81 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑎 = ((𝑥(,]+∞) ∩ (0(,]+∞))) → ((+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) → (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)))
7752, 76rspcimdv 3591 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) → (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)))
7877imp 406 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)) → (+∞ ∈ ((𝑥(,]+∞) ∩ (0(,]+∞)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
7935, 78mpd 15 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)
8079ex 412 . . . 4 ((𝜑𝑥 ∈ ℝ) → (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
8180ralrimdva 3140 . . 3 (𝜑 → (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
82 simplll 774 . . . . . 6 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → 𝜑)
83 simpllr 775 . . . . . . 7 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → 𝑎𝐽)
84 simpr 484 . . . . . . 7 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → +∞ ∈ 𝑎)
851pnfneige0 33928 . . . . . . 7 ((𝑎𝐽 ∧ +∞ ∈ 𝑎) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎)
8683, 84, 85syl2anc 584 . . . . . 6 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → ∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎)
87 simplr 768 . . . . . 6 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)
88 r19.29r 3103 . . . . . . . 8 ((∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) → ∃𝑥 ∈ ℝ ((𝑥(,]+∞) ⊆ 𝑎 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
89 simp-4l 782 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → 𝜑)
90 uznnssnn 12909 . . . . . . . . . . . . . . . . 17 (𝑙 ∈ ℕ → (ℤ𝑙) ⊆ ℕ)
9190ad2antlr 727 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (ℤ𝑙) ⊆ ℕ)
92 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → 𝑘 ∈ (ℤ𝑙))
9391, 92sseldd 3959 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → 𝑘 ∈ ℕ)
9489, 93jca 511 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (𝜑𝑘 ∈ ℕ))
95 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → 𝑥 ∈ ℝ)
96 simpllr 775 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (𝑥(,]+∞) ⊆ 𝑎)
97 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑥 < 𝐴) → (𝑥(,]+∞) ⊆ 𝑎)
98 simplr 768 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝑥 ∈ ℝ)
9998rexrd 11283 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝑥 ∈ ℝ*)
10014ffvelcdmda 7073 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (0[,]+∞))
10115, 100eqeltrrd 2835 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
1027, 101sselid 3956 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ*)
103102ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝐴 ∈ ℝ*)
104 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝑥 < 𝐴)
105 pnfge 13144 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
106103, 105syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝐴 ≤ +∞)
10765biimpar 477 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ* ∧ (𝐴 ∈ ℝ*𝑥 < 𝐴𝐴 ≤ +∞)) → 𝐴 ∈ (𝑥(,]+∞))
10899, 103, 104, 106, 107syl13anc 1374 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 < 𝐴) → 𝐴 ∈ (𝑥(,]+∞))
109108adantlr 715 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑥 < 𝐴) → 𝐴 ∈ (𝑥(,]+∞))
11097, 109sseldd 3959 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑥 < 𝐴) → 𝐴𝑎)
111110ex 412 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) → (𝑥 < 𝐴𝐴𝑎))
11294, 95, 96, 111syl21anc 837 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑙)) → (𝑥 < 𝐴𝐴𝑎))
113112ralimdva 3152 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) ∧ 𝑙 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴 → ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
114113reximdva 3153 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) → (∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝑥 < 𝐴 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
11574, 114biimtrid 242 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥(,]+∞) ⊆ 𝑎) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
116115expimpd 453 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (((𝑥(,]+∞) ⊆ 𝑎 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
117116rexlimdva 3141 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ ((𝑥(,]+∞) ⊆ 𝑎 ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
11888, 117syl5 34 . . . . . . 7 (𝜑 → ((∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎))
119118imp 406 . . . . . 6 ((𝜑 ∧ (∃𝑥 ∈ ℝ (𝑥(,]+∞) ⊆ 𝑎 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴)) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)
12082, 86, 87, 119syl12anc 836 . . . . 5 ((((𝜑𝑎𝐽) ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴) ∧ +∞ ∈ 𝑎) → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)
121120exp31 419 . . . 4 ((𝜑𝑎𝐽) → (∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 → (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)))
122121ralrimdva 3140 . . 3 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴 → ∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎)))
12381, 122impbid 212 . 2 (𝜑 → (∀𝑎𝐽 (+∞ ∈ 𝑎 → ∃𝑙 ∈ ℕ ∀𝑘 ∈ (ℤ𝑙)𝐴𝑎) ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
12423, 123bitrd 279 1 (𝜑 → (𝐹(⇝𝑡𝐽)+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  cin 3925  wss 3926   class class class wbr 5119  wf 6526  cfv 6530  (class class class)co 7403  cr 11126  0cc0 11127  1c1 11128  +∞cpnf 11264  *cxr 11266   < clt 11267  cle 11268  cn 12238  cuz 12850  (,]cioc 13361  [,]cicc 13363  s cress 17249  t crest 17432  TopOpenctopn 17433  ordTopcordt 17511  *𝑠cxrs 17512  Topctop 22829  TopOnctopon 22846  𝑡clm 23162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fi 9421  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-ioo 13364  df-ioc 13365  df-ico 13366  df-icc 13367  df-fz 13523  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-tset 17288  df-ple 17289  df-ds 17291  df-rest 17434  df-topn 17435  df-topgen 17455  df-ordt 17513  df-xrs 17514  df-ps 18574  df-tsr 18575  df-top 22830  df-topon 22847  df-bases 22882  df-lm 23165
This theorem is referenced by:  lmdvglim  33931
  Copyright terms: Public domain W3C validator