Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sinccvglem Structured version   Visualization version   GIF version

Theorem sinccvglem 32915
Description: ((sin‘𝑥) / 𝑥) ⇝ 1 as (real) 𝑥 ⇝ 0. (Contributed by Paul Chapman, 10-Nov-2012.) (Revised by Mario Carneiro, 21-May-2014.)
Hypotheses
Ref Expression
sinccvg.1 (𝜑𝐹:ℕ⟶(ℝ ∖ {0}))
sinccvg.2 (𝜑𝐹 ⇝ 0)
sinccvg.3 𝐺 = (𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥))
sinccvg.4 𝐻 = (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3)))
sinccvg.5 (𝜑𝑀 ∈ ℕ)
sinccvg.6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) < 1)
Assertion
Ref Expression
sinccvglem (𝜑 → (𝐺𝐹) ⇝ 1)
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝐻   𝑘,𝑀   𝜑,𝑘   𝑘,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝑀(𝑥)

Proof of Theorem sinccvglem
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . 2 (ℤ𝑀) = (ℤ𝑀)
2 sinccvg.5 . . 3 (𝜑𝑀 ∈ ℕ)
32nnzd 12087 . 2 (𝜑𝑀 ∈ ℤ)
4 sinccvg.2 . . . 4 (𝜑𝐹 ⇝ 0)
5 sinccvg.4 . . . . . 6 𝐻 = (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3)))
65funmpt2 6394 . . . . 5 Fun 𝐻
7 sinccvg.1 . . . . . 6 (𝜑𝐹:ℕ⟶(ℝ ∖ {0}))
8 nnex 11644 . . . . . 6 ℕ ∈ V
9 fex 6989 . . . . . 6 ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ ℕ ∈ V) → 𝐹 ∈ V)
107, 8, 9sylancl 588 . . . . 5 (𝜑𝐹 ∈ V)
11 cofunexg 7650 . . . . 5 ((Fun 𝐻𝐹 ∈ V) → (𝐻𝐹) ∈ V)
126, 10, 11sylancr 589 . . . 4 (𝜑 → (𝐻𝐹) ∈ V)
137adantr 483 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐹:ℕ⟶(ℝ ∖ {0}))
14 eluznn 12319 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
152, 14sylan 582 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
1613, 15ffvelrnd 6852 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ (ℝ ∖ {0}))
17 eldifsn 4719 . . . . . . 7 ((𝐹𝑘) ∈ (ℝ ∖ {0}) ↔ ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≠ 0))
1816, 17sylib 220 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≠ 0))
1918simpld 497 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
2019recnd 10669 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
21 ax-1cn 10595 . . . . . 6 1 ∈ ℂ
22 sqcl 13485 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥↑2) ∈ ℂ)
23 3cn 11719 . . . . . . . 8 3 ∈ ℂ
24 3ne0 11744 . . . . . . . 8 3 ≠ 0
25 divcl 11304 . . . . . . . 8 (((𝑥↑2) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → ((𝑥↑2) / 3) ∈ ℂ)
2623, 24, 25mp3an23 1449 . . . . . . 7 ((𝑥↑2) ∈ ℂ → ((𝑥↑2) / 3) ∈ ℂ)
2722, 26syl 17 . . . . . 6 (𝑥 ∈ ℂ → ((𝑥↑2) / 3) ∈ ℂ)
28 subcl 10885 . . . . . 6 ((1 ∈ ℂ ∧ ((𝑥↑2) / 3) ∈ ℂ) → (1 − ((𝑥↑2) / 3)) ∈ ℂ)
2921, 27, 28sylancr 589 . . . . 5 (𝑥 ∈ ℂ → (1 − ((𝑥↑2) / 3)) ∈ ℂ)
305, 29fmpti 6876 . . . 4 𝐻:ℂ⟶ℂ
31 eqid 2821 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3231cnfldtopon 23391 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3332a1i 11 . . . . . . . 8 (⊤ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
34 1cnd 10636 . . . . . . . . 9 (⊤ → 1 ∈ ℂ)
3533, 33, 34cnmptc 22270 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ 1) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
3631sqcn 23482 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (𝑥↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
3736a1i 11 . . . . . . . . 9 (⊤ → (𝑥 ∈ ℂ ↦ (𝑥↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
3831divccn 23481 . . . . . . . . . . 11 ((3 ∈ ℂ ∧ 3 ≠ 0) → (𝑦 ∈ ℂ ↦ (𝑦 / 3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
3923, 24, 38mp2an 690 . . . . . . . . . 10 (𝑦 ∈ ℂ ↦ (𝑦 / 3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
4039a1i 11 . . . . . . . . 9 (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / 3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
41 oveq1 7163 . . . . . . . . 9 (𝑦 = (𝑥↑2) → (𝑦 / 3) = ((𝑥↑2) / 3))
4233, 37, 33, 40, 41cnmpt11 22271 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ ((𝑥↑2) / 3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
4331subcn 23474 . . . . . . . . 9 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
4443a1i 11 . . . . . . . 8 (⊤ → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
4533, 35, 42, 44cnmpt12f 22274 . . . . . . 7 (⊤ → (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
4645mptru 1544 . . . . . 6 (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
4731cncfcn1 23518 . . . . . 6 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
4846, 5, 473eltr4i 2926 . . . . 5 𝐻 ∈ (ℂ–cn→ℂ)
49 cncfi 23502 . . . . 5 ((𝐻 ∈ (ℂ–cn→ℂ) ∧ 0 ∈ ℂ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℂ ((abs‘(𝑤 − 0)) < 𝑧 → (abs‘((𝐻𝑤) − (𝐻‘0))) < 𝑦))
5048, 49mp3an1 1444 . . . 4 ((0 ∈ ℂ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℂ ((abs‘(𝑤 − 0)) < 𝑧 → (abs‘((𝐻𝑤) − (𝐻‘0))) < 𝑦))
51 fvco3 6760 . . . . . 6 ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝑘 ∈ ℕ) → ((𝐻𝐹)‘𝑘) = (𝐻‘(𝐹𝑘)))
527, 51sylan 582 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝐻𝐹)‘𝑘) = (𝐻‘(𝐹𝑘)))
5315, 52syldan 593 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐻𝐹)‘𝑘) = (𝐻‘(𝐹𝑘)))
541, 4, 12, 3, 20, 30, 50, 53climcn1lem 14959 . . 3 (𝜑 → (𝐻𝐹) ⇝ (𝐻‘0))
55 0cn 10633 . . . 4 0 ∈ ℂ
56 sq0i 13557 . . . . . . . . 9 (𝑥 = 0 → (𝑥↑2) = 0)
5756oveq1d 7171 . . . . . . . 8 (𝑥 = 0 → ((𝑥↑2) / 3) = (0 / 3))
5823, 24div0i 11374 . . . . . . . 8 (0 / 3) = 0
5957, 58syl6eq 2872 . . . . . . 7 (𝑥 = 0 → ((𝑥↑2) / 3) = 0)
6059oveq2d 7172 . . . . . 6 (𝑥 = 0 → (1 − ((𝑥↑2) / 3)) = (1 − 0))
61 1m0e1 11759 . . . . . 6 (1 − 0) = 1
6260, 61syl6eq 2872 . . . . 5 (𝑥 = 0 → (1 − ((𝑥↑2) / 3)) = 1)
63 1ex 10637 . . . . 5 1 ∈ V
6462, 5, 63fvmpt 6768 . . . 4 (0 ∈ ℂ → (𝐻‘0) = 1)
6555, 64ax-mp 5 . . 3 (𝐻‘0) = 1
6654, 65breqtrdi 5107 . 2 (𝜑 → (𝐻𝐹) ⇝ 1)
67 sinccvg.3 . . . 4 𝐺 = (𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥))
6867funmpt2 6394 . . 3 Fun 𝐺
69 cofunexg 7650 . . 3 ((Fun 𝐺𝐹 ∈ V) → (𝐺𝐹) ∈ V)
7068, 10, 69sylancr 589 . 2 (𝜑 → (𝐺𝐹) ∈ V)
71 oveq1 7163 . . . . . . . 8 (𝑥 = (𝐹𝑘) → (𝑥↑2) = ((𝐹𝑘)↑2))
7271oveq1d 7171 . . . . . . 7 (𝑥 = (𝐹𝑘) → ((𝑥↑2) / 3) = (((𝐹𝑘)↑2) / 3))
7372oveq2d 7172 . . . . . 6 (𝑥 = (𝐹𝑘) → (1 − ((𝑥↑2) / 3)) = (1 − (((𝐹𝑘)↑2) / 3)))
74 ovex 7189 . . . . . 6 (1 − (((𝐹𝑘)↑2) / 3)) ∈ V
7573, 5, 74fvmpt 6768 . . . . 5 ((𝐹𝑘) ∈ ℂ → (𝐻‘(𝐹𝑘)) = (1 − (((𝐹𝑘)↑2) / 3)))
7620, 75syl 17 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻‘(𝐹𝑘)) = (1 − (((𝐹𝑘)↑2) / 3)))
7753, 76eqtrd 2856 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐻𝐹)‘𝑘) = (1 − (((𝐹𝑘)↑2) / 3)))
78 1re 10641 . . . 4 1 ∈ ℝ
7919resqcld 13612 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘)↑2) ∈ ℝ)
80 3nn 11717 . . . . 5 3 ∈ ℕ
81 nndivre 11679 . . . . 5 ((((𝐹𝑘)↑2) ∈ ℝ ∧ 3 ∈ ℕ) → (((𝐹𝑘)↑2) / 3) ∈ ℝ)
8279, 80, 81sylancl 588 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((𝐹𝑘)↑2) / 3) ∈ ℝ)
83 resubcl 10950 . . . 4 ((1 ∈ ℝ ∧ (((𝐹𝑘)↑2) / 3) ∈ ℝ) → (1 − (((𝐹𝑘)↑2) / 3)) ∈ ℝ)
8478, 82, 83sylancr 589 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 − (((𝐹𝑘)↑2) / 3)) ∈ ℝ)
8577, 84eqeltrd 2913 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐻𝐹)‘𝑘) ∈ ℝ)
86 fvco3 6760 . . . . . 6 ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝑘 ∈ ℕ) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
877, 86sylan 582 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
8815, 87syldan 593 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
89 fveq2 6670 . . . . . . 7 (𝑥 = (𝐹𝑘) → (sin‘𝑥) = (sin‘(𝐹𝑘)))
90 id 22 . . . . . . 7 (𝑥 = (𝐹𝑘) → 𝑥 = (𝐹𝑘))
9189, 90oveq12d 7174 . . . . . 6 (𝑥 = (𝐹𝑘) → ((sin‘𝑥) / 𝑥) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
92 ovex 7189 . . . . . 6 ((sin‘(𝐹𝑘)) / (𝐹𝑘)) ∈ V
9391, 67, 92fvmpt 6768 . . . . 5 ((𝐹𝑘) ∈ (ℝ ∖ {0}) → (𝐺‘(𝐹𝑘)) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
9416, 93syl 17 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺‘(𝐹𝑘)) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
9588, 94eqtrd 2856 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐺𝐹)‘𝑘) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
9619resincld 15496 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘(𝐹𝑘)) ∈ ℝ)
9718simprd 498 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ≠ 0)
9896, 19, 97redivcld 11468 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘(𝐹𝑘)) / (𝐹𝑘)) ∈ ℝ)
9995, 98eqeltrd 2913 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐺𝐹)‘𝑘) ∈ ℝ)
100 1cnd 10636 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 1 ∈ ℂ)
10182recnd 10669 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((𝐹𝑘)↑2) / 3) ∈ ℂ)
10220abscld 14796 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℝ)
103102recnd 10669 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℂ)
104100, 101, 103subdird 11097 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((1 − (((𝐹𝑘)↑2) / 3)) · (abs‘(𝐹𝑘))) = ((1 · (abs‘(𝐹𝑘))) − ((((𝐹𝑘)↑2) / 3) · (abs‘(𝐹𝑘)))))
105103mulid2d 10659 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 · (abs‘(𝐹𝑘))) = (abs‘(𝐹𝑘)))
106 df-3 11702 . . . . . . . . . . . . 13 3 = (2 + 1)
107106oveq2i 7167 . . . . . . . . . . . 12 ((abs‘(𝐹𝑘))↑3) = ((abs‘(𝐹𝑘))↑(2 + 1))
108 2nn0 11915 . . . . . . . . . . . . . 14 2 ∈ ℕ0
109 expp1 13437 . . . . . . . . . . . . . 14 (((abs‘(𝐹𝑘)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((abs‘(𝐹𝑘))↑(2 + 1)) = (((abs‘(𝐹𝑘))↑2) · (abs‘(𝐹𝑘))))
110103, 108, 109sylancl 588 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘))↑(2 + 1)) = (((abs‘(𝐹𝑘))↑2) · (abs‘(𝐹𝑘))))
111 absresq 14662 . . . . . . . . . . . . . . 15 ((𝐹𝑘) ∈ ℝ → ((abs‘(𝐹𝑘))↑2) = ((𝐹𝑘)↑2))
11219, 111syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘))↑2) = ((𝐹𝑘)↑2))
113112oveq1d 7171 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((abs‘(𝐹𝑘))↑2) · (abs‘(𝐹𝑘))) = (((𝐹𝑘)↑2) · (abs‘(𝐹𝑘))))
114110, 113eqtrd 2856 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘))↑(2 + 1)) = (((𝐹𝑘)↑2) · (abs‘(𝐹𝑘))))
115107, 114syl5eq 2868 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘))↑3) = (((𝐹𝑘)↑2) · (abs‘(𝐹𝑘))))
116115oveq1d 7171 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((abs‘(𝐹𝑘))↑3) / 3) = ((((𝐹𝑘)↑2) · (abs‘(𝐹𝑘))) / 3))
11779recnd 10669 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘)↑2) ∈ ℂ)
11823a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → 3 ∈ ℂ)
11924a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → 3 ≠ 0)
120117, 103, 118, 119div23d 11453 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((((𝐹𝑘)↑2) · (abs‘(𝐹𝑘))) / 3) = ((((𝐹𝑘)↑2) / 3) · (abs‘(𝐹𝑘))))
121116, 120eqtr2d 2857 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((((𝐹𝑘)↑2) / 3) · (abs‘(𝐹𝑘))) = (((abs‘(𝐹𝑘))↑3) / 3))
122105, 121oveq12d 7174 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((1 · (abs‘(𝐹𝑘))) − ((((𝐹𝑘)↑2) / 3) · (abs‘(𝐹𝑘)))) = ((abs‘(𝐹𝑘)) − (((abs‘(𝐹𝑘))↑3) / 3)))
123104, 122eqtrd 2856 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((1 − (((𝐹𝑘)↑2) / 3)) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) − (((abs‘(𝐹𝑘))↑3) / 3)))
12420, 97absrpcld 14808 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℝ+)
125124rpgt0d 12435 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 < (abs‘(𝐹𝑘)))
126 sinccvg.6 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) < 1)
127 ltle 10729 . . . . . . . . . . . 12 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(𝐹𝑘)) < 1 → (abs‘(𝐹𝑘)) ≤ 1))
128102, 78, 127sylancl 588 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) < 1 → (abs‘(𝐹𝑘)) ≤ 1))
129126, 128mpd 15 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ≤ 1)
130 0xr 10688 . . . . . . . . . . 11 0 ∈ ℝ*
131 elioc2 12800 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((abs‘(𝐹𝑘)) ∈ (0(,]1) ↔ ((abs‘(𝐹𝑘)) ∈ ℝ ∧ 0 < (abs‘(𝐹𝑘)) ∧ (abs‘(𝐹𝑘)) ≤ 1)))
132130, 78, 131mp2an 690 . . . . . . . . . 10 ((abs‘(𝐹𝑘)) ∈ (0(,]1) ↔ ((abs‘(𝐹𝑘)) ∈ ℝ ∧ 0 < (abs‘(𝐹𝑘)) ∧ (abs‘(𝐹𝑘)) ≤ 1))
133102, 125, 129, 132syl3anbrc 1339 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ (0(,]1))
134 sin01bnd 15538 . . . . . . . . 9 ((abs‘(𝐹𝑘)) ∈ (0(,]1) → (((abs‘(𝐹𝑘)) − (((abs‘(𝐹𝑘))↑3) / 3)) < (sin‘(abs‘(𝐹𝑘))) ∧ (sin‘(abs‘(𝐹𝑘))) < (abs‘(𝐹𝑘))))
135133, 134syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((abs‘(𝐹𝑘)) − (((abs‘(𝐹𝑘))↑3) / 3)) < (sin‘(abs‘(𝐹𝑘))) ∧ (sin‘(abs‘(𝐹𝑘))) < (abs‘(𝐹𝑘))))
136135simpld 497 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) − (((abs‘(𝐹𝑘))↑3) / 3)) < (sin‘(abs‘(𝐹𝑘))))
137123, 136eqbrtrd 5088 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((1 − (((𝐹𝑘)↑2) / 3)) · (abs‘(𝐹𝑘))) < (sin‘(abs‘(𝐹𝑘))))
138102resincld 15496 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘(abs‘(𝐹𝑘))) ∈ ℝ)
13984, 138, 124ltmuldivd 12479 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((1 − (((𝐹𝑘)↑2) / 3)) · (abs‘(𝐹𝑘))) < (sin‘(abs‘(𝐹𝑘))) ↔ (1 − (((𝐹𝑘)↑2) / 3)) < ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘)))))
140137, 139mpbid 234 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 − (((𝐹𝑘)↑2) / 3)) < ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))))
141 fveq2 6670 . . . . . . . 8 ((abs‘(𝐹𝑘)) = (𝐹𝑘) → (sin‘(abs‘(𝐹𝑘))) = (sin‘(𝐹𝑘)))
142 id 22 . . . . . . . 8 ((abs‘(𝐹𝑘)) = (𝐹𝑘) → (abs‘(𝐹𝑘)) = (𝐹𝑘))
143141, 142oveq12d 7174 . . . . . . 7 ((abs‘(𝐹𝑘)) = (𝐹𝑘) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
144143a1i 11 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) = (𝐹𝑘) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘(𝐹𝑘)) / (𝐹𝑘))))
145 sinneg 15499 . . . . . . . . . 10 ((𝐹𝑘) ∈ ℂ → (sin‘-(𝐹𝑘)) = -(sin‘(𝐹𝑘)))
14620, 145syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘-(𝐹𝑘)) = -(sin‘(𝐹𝑘)))
147146oveq1d 7171 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘-(𝐹𝑘)) / -(𝐹𝑘)) = (-(sin‘(𝐹𝑘)) / -(𝐹𝑘)))
14896recnd 10669 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘(𝐹𝑘)) ∈ ℂ)
149148, 20, 97div2negd 11431 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (-(sin‘(𝐹𝑘)) / -(𝐹𝑘)) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
150147, 149eqtrd 2856 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘-(𝐹𝑘)) / -(𝐹𝑘)) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
151 fveq2 6670 . . . . . . . . 9 ((abs‘(𝐹𝑘)) = -(𝐹𝑘) → (sin‘(abs‘(𝐹𝑘))) = (sin‘-(𝐹𝑘)))
152 id 22 . . . . . . . . 9 ((abs‘(𝐹𝑘)) = -(𝐹𝑘) → (abs‘(𝐹𝑘)) = -(𝐹𝑘))
153151, 152oveq12d 7174 . . . . . . . 8 ((abs‘(𝐹𝑘)) = -(𝐹𝑘) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘-(𝐹𝑘)) / -(𝐹𝑘)))
154153eqeq1d 2823 . . . . . . 7 ((abs‘(𝐹𝑘)) = -(𝐹𝑘) → (((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)) ↔ ((sin‘-(𝐹𝑘)) / -(𝐹𝑘)) = ((sin‘(𝐹𝑘)) / (𝐹𝑘))))
155150, 154syl5ibrcom 249 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) = -(𝐹𝑘) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘(𝐹𝑘)) / (𝐹𝑘))))
15619absord 14775 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) = (𝐹𝑘) ∨ (abs‘(𝐹𝑘)) = -(𝐹𝑘)))
157144, 155, 156mpjaod 856 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
158140, 157breqtrd 5092 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 − (((𝐹𝑘)↑2) / 3)) < ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
15984, 98, 158ltled 10788 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 − (((𝐹𝑘)↑2) / 3)) ≤ ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
160159, 77, 953brtr4d 5098 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐻𝐹)‘𝑘) ≤ ((𝐺𝐹)‘𝑘))
16178a1i 11 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → 1 ∈ ℝ)
162135simprd 498 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘(abs‘(𝐹𝑘))) < (abs‘(𝐹𝑘)))
163103mulid1d 10658 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) · 1) = (abs‘(𝐹𝑘)))
164162, 163breqtrrd 5094 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘(abs‘(𝐹𝑘))) < ((abs‘(𝐹𝑘)) · 1))
165138, 161, 124ltdivmuld 12483 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) < 1 ↔ (sin‘(abs‘(𝐹𝑘))) < ((abs‘(𝐹𝑘)) · 1)))
166164, 165mpbird 259 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) < 1)
167157, 166eqbrtrrd 5090 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘(𝐹𝑘)) / (𝐹𝑘)) < 1)
16898, 161, 167ltled 10788 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘(𝐹𝑘)) / (𝐹𝑘)) ≤ 1)
16995, 168eqbrtrd 5088 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐺𝐹)‘𝑘) ≤ 1)
1701, 3, 66, 70, 85, 99, 160, 169climsqz 14997 1 (𝜑 → (𝐺𝐹) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wtru 1538  wcel 2114  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cdif 3933  {csn 4567   class class class wbr 5066  cmpt 5146  ccom 5559  Fun wfun 6349  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  *cxr 10674   < clt 10675  cle 10676  cmin 10870  -cneg 10871   / cdiv 11297  cn 11638  2c2 11693  3c3 11694  0cn0 11898  cuz 12244  +crp 12390  (,]cioc 12740  cexp 13430  abscabs 14593  cli 14841  sincsin 15417  TopOpenctopn 16695  fldccnfld 20545  TopOnctopon 21518   Cn ccn 21832   ×t ctx 22168  cnccncf 23484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-fac 13635  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cn 21835  df-cnp 21836  df-tx 22170  df-hmeo 22363  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486
This theorem is referenced by:  sinccvg  32916
  Copyright terms: Public domain W3C validator