Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sinccvglem Structured version   Visualization version   GIF version

Theorem sinccvglem 33028
Description: ((sin‘𝑥) / 𝑥) ⇝ 1 as (real) 𝑥 ⇝ 0. (Contributed by Paul Chapman, 10-Nov-2012.) (Revised by Mario Carneiro, 21-May-2014.)
Hypotheses
Ref Expression
sinccvg.1 (𝜑𝐹:ℕ⟶(ℝ ∖ {0}))
sinccvg.2 (𝜑𝐹 ⇝ 0)
sinccvg.3 𝐺 = (𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥))
sinccvg.4 𝐻 = (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3)))
sinccvg.5 (𝜑𝑀 ∈ ℕ)
sinccvg.6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) < 1)
Assertion
Ref Expression
sinccvglem (𝜑 → (𝐺𝐹) ⇝ 1)
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝐻   𝑘,𝑀   𝜑,𝑘   𝑘,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝑀(𝑥)

Proof of Theorem sinccvglem
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . 2 (ℤ𝑀) = (ℤ𝑀)
2 sinccvg.5 . . 3 (𝜑𝑀 ∈ ℕ)
32nnzd 12074 . 2 (𝜑𝑀 ∈ ℤ)
4 sinccvg.2 . . . 4 (𝜑𝐹 ⇝ 0)
5 sinccvg.4 . . . . . 6 𝐻 = (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3)))
65funmpt2 6363 . . . . 5 Fun 𝐻
7 sinccvg.1 . . . . . 6 (𝜑𝐹:ℕ⟶(ℝ ∖ {0}))
8 nnex 11631 . . . . . 6 ℕ ∈ V
9 fex 6966 . . . . . 6 ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ ℕ ∈ V) → 𝐹 ∈ V)
107, 8, 9sylancl 589 . . . . 5 (𝜑𝐹 ∈ V)
11 cofunexg 7632 . . . . 5 ((Fun 𝐻𝐹 ∈ V) → (𝐻𝐹) ∈ V)
126, 10, 11sylancr 590 . . . 4 (𝜑 → (𝐻𝐹) ∈ V)
137adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐹:ℕ⟶(ℝ ∖ {0}))
14 eluznn 12306 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
152, 14sylan 583 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
1613, 15ffvelrnd 6829 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ (ℝ ∖ {0}))
17 eldifsn 4680 . . . . . . 7 ((𝐹𝑘) ∈ (ℝ ∖ {0}) ↔ ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≠ 0))
1816, 17sylib 221 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≠ 0))
1918simpld 498 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
2019recnd 10658 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
21 ax-1cn 10584 . . . . . 6 1 ∈ ℂ
22 sqcl 13480 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥↑2) ∈ ℂ)
23 3cn 11706 . . . . . . . 8 3 ∈ ℂ
24 3ne0 11731 . . . . . . . 8 3 ≠ 0
25 divcl 11293 . . . . . . . 8 (((𝑥↑2) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → ((𝑥↑2) / 3) ∈ ℂ)
2623, 24, 25mp3an23 1450 . . . . . . 7 ((𝑥↑2) ∈ ℂ → ((𝑥↑2) / 3) ∈ ℂ)
2722, 26syl 17 . . . . . 6 (𝑥 ∈ ℂ → ((𝑥↑2) / 3) ∈ ℂ)
28 subcl 10874 . . . . . 6 ((1 ∈ ℂ ∧ ((𝑥↑2) / 3) ∈ ℂ) → (1 − ((𝑥↑2) / 3)) ∈ ℂ)
2921, 27, 28sylancr 590 . . . . 5 (𝑥 ∈ ℂ → (1 − ((𝑥↑2) / 3)) ∈ ℂ)
305, 29fmpti 6853 . . . 4 𝐻:ℂ⟶ℂ
31 eqid 2798 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3231cnfldtopon 23388 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3332a1i 11 . . . . . . . 8 (⊤ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
34 1cnd 10625 . . . . . . . . 9 (⊤ → 1 ∈ ℂ)
3533, 33, 34cnmptc 22267 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ 1) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
3631sqcn 23479 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (𝑥↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
3736a1i 11 . . . . . . . . 9 (⊤ → (𝑥 ∈ ℂ ↦ (𝑥↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
3831divccn 23478 . . . . . . . . . . 11 ((3 ∈ ℂ ∧ 3 ≠ 0) → (𝑦 ∈ ℂ ↦ (𝑦 / 3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
3923, 24, 38mp2an 691 . . . . . . . . . 10 (𝑦 ∈ ℂ ↦ (𝑦 / 3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
4039a1i 11 . . . . . . . . 9 (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / 3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
41 oveq1 7142 . . . . . . . . 9 (𝑦 = (𝑥↑2) → (𝑦 / 3) = ((𝑥↑2) / 3))
4233, 37, 33, 40, 41cnmpt11 22268 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ ((𝑥↑2) / 3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
4331subcn 23471 . . . . . . . . 9 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
4443a1i 11 . . . . . . . 8 (⊤ → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
4533, 35, 42, 44cnmpt12f 22271 . . . . . . 7 (⊤ → (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
4645mptru 1545 . . . . . 6 (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
4731cncfcn1 23516 . . . . . 6 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
4846, 5, 473eltr4i 2903 . . . . 5 𝐻 ∈ (ℂ–cn→ℂ)
49 cncfi 23499 . . . . 5 ((𝐻 ∈ (ℂ–cn→ℂ) ∧ 0 ∈ ℂ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℂ ((abs‘(𝑤 − 0)) < 𝑧 → (abs‘((𝐻𝑤) − (𝐻‘0))) < 𝑦))
5048, 49mp3an1 1445 . . . 4 ((0 ∈ ℂ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℂ ((abs‘(𝑤 − 0)) < 𝑧 → (abs‘((𝐻𝑤) − (𝐻‘0))) < 𝑦))
51 fvco3 6737 . . . . . 6 ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝑘 ∈ ℕ) → ((𝐻𝐹)‘𝑘) = (𝐻‘(𝐹𝑘)))
527, 51sylan 583 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝐻𝐹)‘𝑘) = (𝐻‘(𝐹𝑘)))
5315, 52syldan 594 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐻𝐹)‘𝑘) = (𝐻‘(𝐹𝑘)))
541, 4, 12, 3, 20, 30, 50, 53climcn1lem 14951 . . 3 (𝜑 → (𝐻𝐹) ⇝ (𝐻‘0))
55 0cn 10622 . . . 4 0 ∈ ℂ
56 sq0i 13552 . . . . . . . . 9 (𝑥 = 0 → (𝑥↑2) = 0)
5756oveq1d 7150 . . . . . . . 8 (𝑥 = 0 → ((𝑥↑2) / 3) = (0 / 3))
5823, 24div0i 11363 . . . . . . . 8 (0 / 3) = 0
5957, 58eqtrdi 2849 . . . . . . 7 (𝑥 = 0 → ((𝑥↑2) / 3) = 0)
6059oveq2d 7151 . . . . . 6 (𝑥 = 0 → (1 − ((𝑥↑2) / 3)) = (1 − 0))
61 1m0e1 11746 . . . . . 6 (1 − 0) = 1
6260, 61eqtrdi 2849 . . . . 5 (𝑥 = 0 → (1 − ((𝑥↑2) / 3)) = 1)
63 1ex 10626 . . . . 5 1 ∈ V
6462, 5, 63fvmpt 6745 . . . 4 (0 ∈ ℂ → (𝐻‘0) = 1)
6555, 64ax-mp 5 . . 3 (𝐻‘0) = 1
6654, 65breqtrdi 5071 . 2 (𝜑 → (𝐻𝐹) ⇝ 1)
67 sinccvg.3 . . . 4 𝐺 = (𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥))
6867funmpt2 6363 . . 3 Fun 𝐺
69 cofunexg 7632 . . 3 ((Fun 𝐺𝐹 ∈ V) → (𝐺𝐹) ∈ V)
7068, 10, 69sylancr 590 . 2 (𝜑 → (𝐺𝐹) ∈ V)
71 oveq1 7142 . . . . . . . 8 (𝑥 = (𝐹𝑘) → (𝑥↑2) = ((𝐹𝑘)↑2))
7271oveq1d 7150 . . . . . . 7 (𝑥 = (𝐹𝑘) → ((𝑥↑2) / 3) = (((𝐹𝑘)↑2) / 3))
7372oveq2d 7151 . . . . . 6 (𝑥 = (𝐹𝑘) → (1 − ((𝑥↑2) / 3)) = (1 − (((𝐹𝑘)↑2) / 3)))
74 ovex 7168 . . . . . 6 (1 − (((𝐹𝑘)↑2) / 3)) ∈ V
7573, 5, 74fvmpt 6745 . . . . 5 ((𝐹𝑘) ∈ ℂ → (𝐻‘(𝐹𝑘)) = (1 − (((𝐹𝑘)↑2) / 3)))
7620, 75syl 17 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻‘(𝐹𝑘)) = (1 − (((𝐹𝑘)↑2) / 3)))
7753, 76eqtrd 2833 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐻𝐹)‘𝑘) = (1 − (((𝐹𝑘)↑2) / 3)))
78 1re 10630 . . . 4 1 ∈ ℝ
7919resqcld 13607 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘)↑2) ∈ ℝ)
80 3nn 11704 . . . . 5 3 ∈ ℕ
81 nndivre 11666 . . . . 5 ((((𝐹𝑘)↑2) ∈ ℝ ∧ 3 ∈ ℕ) → (((𝐹𝑘)↑2) / 3) ∈ ℝ)
8279, 80, 81sylancl 589 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((𝐹𝑘)↑2) / 3) ∈ ℝ)
83 resubcl 10939 . . . 4 ((1 ∈ ℝ ∧ (((𝐹𝑘)↑2) / 3) ∈ ℝ) → (1 − (((𝐹𝑘)↑2) / 3)) ∈ ℝ)
8478, 82, 83sylancr 590 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 − (((𝐹𝑘)↑2) / 3)) ∈ ℝ)
8577, 84eqeltrd 2890 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐻𝐹)‘𝑘) ∈ ℝ)
86 fvco3 6737 . . . . . 6 ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝑘 ∈ ℕ) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
877, 86sylan 583 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
8815, 87syldan 594 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
89 fveq2 6645 . . . . . . 7 (𝑥 = (𝐹𝑘) → (sin‘𝑥) = (sin‘(𝐹𝑘)))
90 id 22 . . . . . . 7 (𝑥 = (𝐹𝑘) → 𝑥 = (𝐹𝑘))
9189, 90oveq12d 7153 . . . . . 6 (𝑥 = (𝐹𝑘) → ((sin‘𝑥) / 𝑥) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
92 ovex 7168 . . . . . 6 ((sin‘(𝐹𝑘)) / (𝐹𝑘)) ∈ V
9391, 67, 92fvmpt 6745 . . . . 5 ((𝐹𝑘) ∈ (ℝ ∖ {0}) → (𝐺‘(𝐹𝑘)) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
9416, 93syl 17 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺‘(𝐹𝑘)) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
9588, 94eqtrd 2833 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐺𝐹)‘𝑘) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
9619resincld 15488 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘(𝐹𝑘)) ∈ ℝ)
9718simprd 499 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ≠ 0)
9896, 19, 97redivcld 11457 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘(𝐹𝑘)) / (𝐹𝑘)) ∈ ℝ)
9995, 98eqeltrd 2890 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐺𝐹)‘𝑘) ∈ ℝ)
100 1cnd 10625 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 1 ∈ ℂ)
10182recnd 10658 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((𝐹𝑘)↑2) / 3) ∈ ℂ)
10220abscld 14788 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℝ)
103102recnd 10658 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℂ)
104100, 101, 103subdird 11086 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((1 − (((𝐹𝑘)↑2) / 3)) · (abs‘(𝐹𝑘))) = ((1 · (abs‘(𝐹𝑘))) − ((((𝐹𝑘)↑2) / 3) · (abs‘(𝐹𝑘)))))
105103mulid2d 10648 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 · (abs‘(𝐹𝑘))) = (abs‘(𝐹𝑘)))
106 df-3 11689 . . . . . . . . . . . . 13 3 = (2 + 1)
107106oveq2i 7146 . . . . . . . . . . . 12 ((abs‘(𝐹𝑘))↑3) = ((abs‘(𝐹𝑘))↑(2 + 1))
108 2nn0 11902 . . . . . . . . . . . . . 14 2 ∈ ℕ0
109 expp1 13432 . . . . . . . . . . . . . 14 (((abs‘(𝐹𝑘)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((abs‘(𝐹𝑘))↑(2 + 1)) = (((abs‘(𝐹𝑘))↑2) · (abs‘(𝐹𝑘))))
110103, 108, 109sylancl 589 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘))↑(2 + 1)) = (((abs‘(𝐹𝑘))↑2) · (abs‘(𝐹𝑘))))
111 absresq 14654 . . . . . . . . . . . . . . 15 ((𝐹𝑘) ∈ ℝ → ((abs‘(𝐹𝑘))↑2) = ((𝐹𝑘)↑2))
11219, 111syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘))↑2) = ((𝐹𝑘)↑2))
113112oveq1d 7150 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((abs‘(𝐹𝑘))↑2) · (abs‘(𝐹𝑘))) = (((𝐹𝑘)↑2) · (abs‘(𝐹𝑘))))
114110, 113eqtrd 2833 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘))↑(2 + 1)) = (((𝐹𝑘)↑2) · (abs‘(𝐹𝑘))))
115107, 114syl5eq 2845 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘))↑3) = (((𝐹𝑘)↑2) · (abs‘(𝐹𝑘))))
116115oveq1d 7150 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((abs‘(𝐹𝑘))↑3) / 3) = ((((𝐹𝑘)↑2) · (abs‘(𝐹𝑘))) / 3))
11779recnd 10658 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘)↑2) ∈ ℂ)
11823a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → 3 ∈ ℂ)
11924a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → 3 ≠ 0)
120117, 103, 118, 119div23d 11442 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((((𝐹𝑘)↑2) · (abs‘(𝐹𝑘))) / 3) = ((((𝐹𝑘)↑2) / 3) · (abs‘(𝐹𝑘))))
121116, 120eqtr2d 2834 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((((𝐹𝑘)↑2) / 3) · (abs‘(𝐹𝑘))) = (((abs‘(𝐹𝑘))↑3) / 3))
122105, 121oveq12d 7153 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((1 · (abs‘(𝐹𝑘))) − ((((𝐹𝑘)↑2) / 3) · (abs‘(𝐹𝑘)))) = ((abs‘(𝐹𝑘)) − (((abs‘(𝐹𝑘))↑3) / 3)))
123104, 122eqtrd 2833 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((1 − (((𝐹𝑘)↑2) / 3)) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) − (((abs‘(𝐹𝑘))↑3) / 3)))
12420, 97absrpcld 14800 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℝ+)
125124rpgt0d 12422 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 < (abs‘(𝐹𝑘)))
126 sinccvg.6 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) < 1)
127 ltle 10718 . . . . . . . . . . . 12 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(𝐹𝑘)) < 1 → (abs‘(𝐹𝑘)) ≤ 1))
128102, 78, 127sylancl 589 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) < 1 → (abs‘(𝐹𝑘)) ≤ 1))
129126, 128mpd 15 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ≤ 1)
130 0xr 10677 . . . . . . . . . . 11 0 ∈ ℝ*
131 elioc2 12788 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((abs‘(𝐹𝑘)) ∈ (0(,]1) ↔ ((abs‘(𝐹𝑘)) ∈ ℝ ∧ 0 < (abs‘(𝐹𝑘)) ∧ (abs‘(𝐹𝑘)) ≤ 1)))
132130, 78, 131mp2an 691 . . . . . . . . . 10 ((abs‘(𝐹𝑘)) ∈ (0(,]1) ↔ ((abs‘(𝐹𝑘)) ∈ ℝ ∧ 0 < (abs‘(𝐹𝑘)) ∧ (abs‘(𝐹𝑘)) ≤ 1))
133102, 125, 129, 132syl3anbrc 1340 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ (0(,]1))
134 sin01bnd 15530 . . . . . . . . 9 ((abs‘(𝐹𝑘)) ∈ (0(,]1) → (((abs‘(𝐹𝑘)) − (((abs‘(𝐹𝑘))↑3) / 3)) < (sin‘(abs‘(𝐹𝑘))) ∧ (sin‘(abs‘(𝐹𝑘))) < (abs‘(𝐹𝑘))))
135133, 134syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((abs‘(𝐹𝑘)) − (((abs‘(𝐹𝑘))↑3) / 3)) < (sin‘(abs‘(𝐹𝑘))) ∧ (sin‘(abs‘(𝐹𝑘))) < (abs‘(𝐹𝑘))))
136135simpld 498 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) − (((abs‘(𝐹𝑘))↑3) / 3)) < (sin‘(abs‘(𝐹𝑘))))
137123, 136eqbrtrd 5052 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((1 − (((𝐹𝑘)↑2) / 3)) · (abs‘(𝐹𝑘))) < (sin‘(abs‘(𝐹𝑘))))
138102resincld 15488 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘(abs‘(𝐹𝑘))) ∈ ℝ)
13984, 138, 124ltmuldivd 12466 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((1 − (((𝐹𝑘)↑2) / 3)) · (abs‘(𝐹𝑘))) < (sin‘(abs‘(𝐹𝑘))) ↔ (1 − (((𝐹𝑘)↑2) / 3)) < ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘)))))
140137, 139mpbid 235 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 − (((𝐹𝑘)↑2) / 3)) < ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))))
141 fveq2 6645 . . . . . . . 8 ((abs‘(𝐹𝑘)) = (𝐹𝑘) → (sin‘(abs‘(𝐹𝑘))) = (sin‘(𝐹𝑘)))
142 id 22 . . . . . . . 8 ((abs‘(𝐹𝑘)) = (𝐹𝑘) → (abs‘(𝐹𝑘)) = (𝐹𝑘))
143141, 142oveq12d 7153 . . . . . . 7 ((abs‘(𝐹𝑘)) = (𝐹𝑘) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
144143a1i 11 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) = (𝐹𝑘) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘(𝐹𝑘)) / (𝐹𝑘))))
145 sinneg 15491 . . . . . . . . . 10 ((𝐹𝑘) ∈ ℂ → (sin‘-(𝐹𝑘)) = -(sin‘(𝐹𝑘)))
14620, 145syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘-(𝐹𝑘)) = -(sin‘(𝐹𝑘)))
147146oveq1d 7150 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘-(𝐹𝑘)) / -(𝐹𝑘)) = (-(sin‘(𝐹𝑘)) / -(𝐹𝑘)))
14896recnd 10658 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘(𝐹𝑘)) ∈ ℂ)
149148, 20, 97div2negd 11420 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (-(sin‘(𝐹𝑘)) / -(𝐹𝑘)) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
150147, 149eqtrd 2833 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘-(𝐹𝑘)) / -(𝐹𝑘)) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
151 fveq2 6645 . . . . . . . . 9 ((abs‘(𝐹𝑘)) = -(𝐹𝑘) → (sin‘(abs‘(𝐹𝑘))) = (sin‘-(𝐹𝑘)))
152 id 22 . . . . . . . . 9 ((abs‘(𝐹𝑘)) = -(𝐹𝑘) → (abs‘(𝐹𝑘)) = -(𝐹𝑘))
153151, 152oveq12d 7153 . . . . . . . 8 ((abs‘(𝐹𝑘)) = -(𝐹𝑘) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘-(𝐹𝑘)) / -(𝐹𝑘)))
154153eqeq1d 2800 . . . . . . 7 ((abs‘(𝐹𝑘)) = -(𝐹𝑘) → (((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)) ↔ ((sin‘-(𝐹𝑘)) / -(𝐹𝑘)) = ((sin‘(𝐹𝑘)) / (𝐹𝑘))))
155150, 154syl5ibrcom 250 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) = -(𝐹𝑘) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘(𝐹𝑘)) / (𝐹𝑘))))
15619absord 14767 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) = (𝐹𝑘) ∨ (abs‘(𝐹𝑘)) = -(𝐹𝑘)))
157144, 155, 156mpjaod 857 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
158140, 157breqtrd 5056 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 − (((𝐹𝑘)↑2) / 3)) < ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
15984, 98, 158ltled 10777 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 − (((𝐹𝑘)↑2) / 3)) ≤ ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
160159, 77, 953brtr4d 5062 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐻𝐹)‘𝑘) ≤ ((𝐺𝐹)‘𝑘))
16178a1i 11 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → 1 ∈ ℝ)
162135simprd 499 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘(abs‘(𝐹𝑘))) < (abs‘(𝐹𝑘)))
163103mulid1d 10647 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) · 1) = (abs‘(𝐹𝑘)))
164162, 163breqtrrd 5058 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘(abs‘(𝐹𝑘))) < ((abs‘(𝐹𝑘)) · 1))
165138, 161, 124ltdivmuld 12470 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) < 1 ↔ (sin‘(abs‘(𝐹𝑘))) < ((abs‘(𝐹𝑘)) · 1)))
166164, 165mpbird 260 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) < 1)
167157, 166eqbrtrrd 5054 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘(𝐹𝑘)) / (𝐹𝑘)) < 1)
16898, 161, 167ltled 10777 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘(𝐹𝑘)) / (𝐹𝑘)) ≤ 1)
16995, 168eqbrtrd 5052 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐺𝐹)‘𝑘) ≤ 1)
1701, 3, 66, 70, 85, 99, 160, 169climsqz 14989 1 (𝜑 → (𝐺𝐹) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wtru 1539  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  cdif 3878  {csn 4525   class class class wbr 5030  cmpt 5110  ccom 5523  Fun wfun 6318  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  *cxr 10663   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  2c2 11680  3c3 11681  0cn0 11885  cuz 12231  +crp 12377  (,]cioc 12727  cexp 13425  abscabs 14585  cli 14833  sincsin 15409  TopOpenctopn 16687  fldccnfld 20091  TopOnctopon 21515   Cn ccn 21829   ×t ctx 22165  cnccncf 23481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-fac 13630  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cn 21832  df-cnp 21833  df-tx 22167  df-hmeo 22360  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483
This theorem is referenced by:  sinccvg  33029
  Copyright terms: Public domain W3C validator