Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sinccvglem Structured version   Visualization version   GIF version

Theorem sinccvglem 35148
Description: ((sin‘𝑥) / 𝑥) ⇝ 1 as (real) 𝑥 ⇝ 0. (Contributed by Paul Chapman, 10-Nov-2012.) (Revised by Mario Carneiro, 21-May-2014.)
Hypotheses
Ref Expression
sinccvg.1 (𝜑𝐹:ℕ⟶(ℝ ∖ {0}))
sinccvg.2 (𝜑𝐹 ⇝ 0)
sinccvg.3 𝐺 = (𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥))
sinccvg.4 𝐻 = (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3)))
sinccvg.5 (𝜑𝑀 ∈ ℕ)
sinccvg.6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) < 1)
Assertion
Ref Expression
sinccvglem (𝜑 → (𝐺𝐹) ⇝ 1)
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝐻   𝑘,𝑀   𝜑,𝑘   𝑘,𝐺
Allowed substitution hints:   𝜑(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝑀(𝑥)

Proof of Theorem sinccvglem
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2724 . 2 (ℤ𝑀) = (ℤ𝑀)
2 sinccvg.5 . . 3 (𝜑𝑀 ∈ ℕ)
32nnzd 12583 . 2 (𝜑𝑀 ∈ ℤ)
4 sinccvg.2 . . . 4 (𝜑𝐹 ⇝ 0)
5 sinccvg.4 . . . . . 6 𝐻 = (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3)))
65funmpt2 6578 . . . . 5 Fun 𝐻
7 sinccvg.1 . . . . . 6 (𝜑𝐹:ℕ⟶(ℝ ∖ {0}))
8 nnex 12216 . . . . . 6 ℕ ∈ V
9 fex 7220 . . . . . 6 ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ ℕ ∈ V) → 𝐹 ∈ V)
107, 8, 9sylancl 585 . . . . 5 (𝜑𝐹 ∈ V)
11 cofunexg 7929 . . . . 5 ((Fun 𝐻𝐹 ∈ V) → (𝐻𝐹) ∈ V)
126, 10, 11sylancr 586 . . . 4 (𝜑 → (𝐻𝐹) ∈ V)
137adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐹:ℕ⟶(ℝ ∖ {0}))
14 eluznn 12900 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
152, 14sylan 579 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
1613, 15ffvelcdmd 7078 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ (ℝ ∖ {0}))
17 eldifsn 4783 . . . . . . 7 ((𝐹𝑘) ∈ (ℝ ∖ {0}) ↔ ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≠ 0))
1816, 17sylib 217 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘) ∈ ℝ ∧ (𝐹𝑘) ≠ 0))
1918simpld 494 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℝ)
2019recnd 11240 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
21 ax-1cn 11165 . . . . . 6 1 ∈ ℂ
22 sqcl 14081 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥↑2) ∈ ℂ)
23 3cn 12291 . . . . . . . 8 3 ∈ ℂ
24 3ne0 12316 . . . . . . . 8 3 ≠ 0
25 divcl 11876 . . . . . . . 8 (((𝑥↑2) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → ((𝑥↑2) / 3) ∈ ℂ)
2623, 24, 25mp3an23 1449 . . . . . . 7 ((𝑥↑2) ∈ ℂ → ((𝑥↑2) / 3) ∈ ℂ)
2722, 26syl 17 . . . . . 6 (𝑥 ∈ ℂ → ((𝑥↑2) / 3) ∈ ℂ)
28 subcl 11457 . . . . . 6 ((1 ∈ ℂ ∧ ((𝑥↑2) / 3) ∈ ℂ) → (1 − ((𝑥↑2) / 3)) ∈ ℂ)
2921, 27, 28sylancr 586 . . . . 5 (𝑥 ∈ ℂ → (1 − ((𝑥↑2) / 3)) ∈ ℂ)
305, 29fmpti 7104 . . . 4 𝐻:ℂ⟶ℂ
31 eqid 2724 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
3231cnfldtopon 24623 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3332a1i 11 . . . . . . . 8 (⊤ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
34 1cnd 11207 . . . . . . . . 9 (⊤ → 1 ∈ ℂ)
3533, 33, 34cnmptc 23490 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ 1) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
3631sqcn 24718 . . . . . . . . . 10 (𝑥 ∈ ℂ ↦ (𝑥↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
3736a1i 11 . . . . . . . . 9 (⊤ → (𝑥 ∈ ℂ ↦ (𝑥↑2)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
3831divccn 24715 . . . . . . . . . . 11 ((3 ∈ ℂ ∧ 3 ≠ 0) → (𝑦 ∈ ℂ ↦ (𝑦 / 3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
3923, 24, 38mp2an 689 . . . . . . . . . 10 (𝑦 ∈ ℂ ↦ (𝑦 / 3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
4039a1i 11 . . . . . . . . 9 (⊤ → (𝑦 ∈ ℂ ↦ (𝑦 / 3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
41 oveq1 7409 . . . . . . . . 9 (𝑦 = (𝑥↑2) → (𝑦 / 3) = ((𝑥↑2) / 3))
4233, 37, 33, 40, 41cnmpt11 23491 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ ((𝑥↑2) / 3)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
4331subcn 24706 . . . . . . . . 9 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
4443a1i 11 . . . . . . . 8 (⊤ → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
4533, 35, 42, 44cnmpt12f 23494 . . . . . . 7 (⊤ → (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
4645mptru 1540 . . . . . 6 (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3))) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
4731cncfcn1 24755 . . . . . 6 (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld))
4846, 5, 473eltr4i 2838 . . . . 5 𝐻 ∈ (ℂ–cn→ℂ)
49 cncfi 24738 . . . . 5 ((𝐻 ∈ (ℂ–cn→ℂ) ∧ 0 ∈ ℂ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℂ ((abs‘(𝑤 − 0)) < 𝑧 → (abs‘((𝐻𝑤) − (𝐻‘0))) < 𝑦))
5048, 49mp3an1 1444 . . . 4 ((0 ∈ ℂ ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤 ∈ ℂ ((abs‘(𝑤 − 0)) < 𝑧 → (abs‘((𝐻𝑤) − (𝐻‘0))) < 𝑦))
51 fvco3 6981 . . . . . 6 ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝑘 ∈ ℕ) → ((𝐻𝐹)‘𝑘) = (𝐻‘(𝐹𝑘)))
527, 51sylan 579 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝐻𝐹)‘𝑘) = (𝐻‘(𝐹𝑘)))
5315, 52syldan 590 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐻𝐹)‘𝑘) = (𝐻‘(𝐹𝑘)))
541, 4, 12, 3, 20, 30, 50, 53climcn1lem 15545 . . 3 (𝜑 → (𝐻𝐹) ⇝ (𝐻‘0))
55 0cn 11204 . . . 4 0 ∈ ℂ
56 sq0i 14155 . . . . . . . . 9 (𝑥 = 0 → (𝑥↑2) = 0)
5756oveq1d 7417 . . . . . . . 8 (𝑥 = 0 → ((𝑥↑2) / 3) = (0 / 3))
5823, 24div0i 11946 . . . . . . . 8 (0 / 3) = 0
5957, 58eqtrdi 2780 . . . . . . 7 (𝑥 = 0 → ((𝑥↑2) / 3) = 0)
6059oveq2d 7418 . . . . . 6 (𝑥 = 0 → (1 − ((𝑥↑2) / 3)) = (1 − 0))
61 1m0e1 12331 . . . . . 6 (1 − 0) = 1
6260, 61eqtrdi 2780 . . . . 5 (𝑥 = 0 → (1 − ((𝑥↑2) / 3)) = 1)
63 1ex 11208 . . . . 5 1 ∈ V
6462, 5, 63fvmpt 6989 . . . 4 (0 ∈ ℂ → (𝐻‘0) = 1)
6555, 64ax-mp 5 . . 3 (𝐻‘0) = 1
6654, 65breqtrdi 5180 . 2 (𝜑 → (𝐻𝐹) ⇝ 1)
67 sinccvg.3 . . . 4 𝐺 = (𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥))
6867funmpt2 6578 . . 3 Fun 𝐺
69 cofunexg 7929 . . 3 ((Fun 𝐺𝐹 ∈ V) → (𝐺𝐹) ∈ V)
7068, 10, 69sylancr 586 . 2 (𝜑 → (𝐺𝐹) ∈ V)
71 oveq1 7409 . . . . . . . 8 (𝑥 = (𝐹𝑘) → (𝑥↑2) = ((𝐹𝑘)↑2))
7271oveq1d 7417 . . . . . . 7 (𝑥 = (𝐹𝑘) → ((𝑥↑2) / 3) = (((𝐹𝑘)↑2) / 3))
7372oveq2d 7418 . . . . . 6 (𝑥 = (𝐹𝑘) → (1 − ((𝑥↑2) / 3)) = (1 − (((𝐹𝑘)↑2) / 3)))
74 ovex 7435 . . . . . 6 (1 − (((𝐹𝑘)↑2) / 3)) ∈ V
7573, 5, 74fvmpt 6989 . . . . 5 ((𝐹𝑘) ∈ ℂ → (𝐻‘(𝐹𝑘)) = (1 − (((𝐹𝑘)↑2) / 3)))
7620, 75syl 17 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻‘(𝐹𝑘)) = (1 − (((𝐹𝑘)↑2) / 3)))
7753, 76eqtrd 2764 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐻𝐹)‘𝑘) = (1 − (((𝐹𝑘)↑2) / 3)))
78 1re 11212 . . . 4 1 ∈ ℝ
7919resqcld 14088 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘)↑2) ∈ ℝ)
80 3nn 12289 . . . . 5 3 ∈ ℕ
81 nndivre 12251 . . . . 5 ((((𝐹𝑘)↑2) ∈ ℝ ∧ 3 ∈ ℕ) → (((𝐹𝑘)↑2) / 3) ∈ ℝ)
8279, 80, 81sylancl 585 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((𝐹𝑘)↑2) / 3) ∈ ℝ)
83 resubcl 11522 . . . 4 ((1 ∈ ℝ ∧ (((𝐹𝑘)↑2) / 3) ∈ ℝ) → (1 − (((𝐹𝑘)↑2) / 3)) ∈ ℝ)
8478, 82, 83sylancr 586 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 − (((𝐹𝑘)↑2) / 3)) ∈ ℝ)
8577, 84eqeltrd 2825 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐻𝐹)‘𝑘) ∈ ℝ)
86 fvco3 6981 . . . . . 6 ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝑘 ∈ ℕ) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
877, 86sylan 579 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
8815, 87syldan 590 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐺𝐹)‘𝑘) = (𝐺‘(𝐹𝑘)))
89 fveq2 6882 . . . . . . 7 (𝑥 = (𝐹𝑘) → (sin‘𝑥) = (sin‘(𝐹𝑘)))
90 id 22 . . . . . . 7 (𝑥 = (𝐹𝑘) → 𝑥 = (𝐹𝑘))
9189, 90oveq12d 7420 . . . . . 6 (𝑥 = (𝐹𝑘) → ((sin‘𝑥) / 𝑥) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
92 ovex 7435 . . . . . 6 ((sin‘(𝐹𝑘)) / (𝐹𝑘)) ∈ V
9391, 67, 92fvmpt 6989 . . . . 5 ((𝐹𝑘) ∈ (ℝ ∖ {0}) → (𝐺‘(𝐹𝑘)) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
9416, 93syl 17 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺‘(𝐹𝑘)) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
9588, 94eqtrd 2764 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐺𝐹)‘𝑘) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
9619resincld 16085 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘(𝐹𝑘)) ∈ ℝ)
9718simprd 495 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ≠ 0)
9896, 19, 97redivcld 12040 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘(𝐹𝑘)) / (𝐹𝑘)) ∈ ℝ)
9995, 98eqeltrd 2825 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐺𝐹)‘𝑘) ∈ ℝ)
100 1cnd 11207 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 1 ∈ ℂ)
10182recnd 11240 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((𝐹𝑘)↑2) / 3) ∈ ℂ)
10220abscld 15381 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℝ)
103102recnd 11240 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℂ)
104100, 101, 103subdird 11669 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((1 − (((𝐹𝑘)↑2) / 3)) · (abs‘(𝐹𝑘))) = ((1 · (abs‘(𝐹𝑘))) − ((((𝐹𝑘)↑2) / 3) · (abs‘(𝐹𝑘)))))
105103mullidd 11230 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 · (abs‘(𝐹𝑘))) = (abs‘(𝐹𝑘)))
106 df-3 12274 . . . . . . . . . . . . 13 3 = (2 + 1)
107106oveq2i 7413 . . . . . . . . . . . 12 ((abs‘(𝐹𝑘))↑3) = ((abs‘(𝐹𝑘))↑(2 + 1))
108 2nn0 12487 . . . . . . . . . . . . . 14 2 ∈ ℕ0
109 expp1 14032 . . . . . . . . . . . . . 14 (((abs‘(𝐹𝑘)) ∈ ℂ ∧ 2 ∈ ℕ0) → ((abs‘(𝐹𝑘))↑(2 + 1)) = (((abs‘(𝐹𝑘))↑2) · (abs‘(𝐹𝑘))))
110103, 108, 109sylancl 585 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘))↑(2 + 1)) = (((abs‘(𝐹𝑘))↑2) · (abs‘(𝐹𝑘))))
111 absresq 15247 . . . . . . . . . . . . . . 15 ((𝐹𝑘) ∈ ℝ → ((abs‘(𝐹𝑘))↑2) = ((𝐹𝑘)↑2))
11219, 111syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘))↑2) = ((𝐹𝑘)↑2))
113112oveq1d 7417 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((abs‘(𝐹𝑘))↑2) · (abs‘(𝐹𝑘))) = (((𝐹𝑘)↑2) · (abs‘(𝐹𝑘))))
114110, 113eqtrd 2764 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘))↑(2 + 1)) = (((𝐹𝑘)↑2) · (abs‘(𝐹𝑘))))
115107, 114eqtrid 2776 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘))↑3) = (((𝐹𝑘)↑2) · (abs‘(𝐹𝑘))))
116115oveq1d 7417 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((abs‘(𝐹𝑘))↑3) / 3) = ((((𝐹𝑘)↑2) · (abs‘(𝐹𝑘))) / 3))
11779recnd 11240 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘)↑2) ∈ ℂ)
11823a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → 3 ∈ ℂ)
11924a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → 3 ≠ 0)
120117, 103, 118, 119div23d 12025 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((((𝐹𝑘)↑2) · (abs‘(𝐹𝑘))) / 3) = ((((𝐹𝑘)↑2) / 3) · (abs‘(𝐹𝑘))))
121116, 120eqtr2d 2765 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((((𝐹𝑘)↑2) / 3) · (abs‘(𝐹𝑘))) = (((abs‘(𝐹𝑘))↑3) / 3))
122105, 121oveq12d 7420 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((1 · (abs‘(𝐹𝑘))) − ((((𝐹𝑘)↑2) / 3) · (abs‘(𝐹𝑘)))) = ((abs‘(𝐹𝑘)) − (((abs‘(𝐹𝑘))↑3) / 3)))
123104, 122eqtrd 2764 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((1 − (((𝐹𝑘)↑2) / 3)) · (abs‘(𝐹𝑘))) = ((abs‘(𝐹𝑘)) − (((abs‘(𝐹𝑘))↑3) / 3)))
12420, 97absrpcld 15393 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℝ+)
125124rpgt0d 13017 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → 0 < (abs‘(𝐹𝑘)))
126 sinccvg.6 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) < 1)
127 ltle 11300 . . . . . . . . . . . 12 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(𝐹𝑘)) < 1 → (abs‘(𝐹𝑘)) ≤ 1))
128102, 78, 127sylancl 585 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) < 1 → (abs‘(𝐹𝑘)) ≤ 1))
129126, 128mpd 15 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ≤ 1)
130 0xr 11259 . . . . . . . . . . 11 0 ∈ ℝ*
131 elioc2 13385 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((abs‘(𝐹𝑘)) ∈ (0(,]1) ↔ ((abs‘(𝐹𝑘)) ∈ ℝ ∧ 0 < (abs‘(𝐹𝑘)) ∧ (abs‘(𝐹𝑘)) ≤ 1)))
132130, 78, 131mp2an 689 . . . . . . . . . 10 ((abs‘(𝐹𝑘)) ∈ (0(,]1) ↔ ((abs‘(𝐹𝑘)) ∈ ℝ ∧ 0 < (abs‘(𝐹𝑘)) ∧ (abs‘(𝐹𝑘)) ≤ 1))
133102, 125, 129, 132syl3anbrc 1340 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ (0(,]1))
134 sin01bnd 16127 . . . . . . . . 9 ((abs‘(𝐹𝑘)) ∈ (0(,]1) → (((abs‘(𝐹𝑘)) − (((abs‘(𝐹𝑘))↑3) / 3)) < (sin‘(abs‘(𝐹𝑘))) ∧ (sin‘(abs‘(𝐹𝑘))) < (abs‘(𝐹𝑘))))
135133, 134syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((abs‘(𝐹𝑘)) − (((abs‘(𝐹𝑘))↑3) / 3)) < (sin‘(abs‘(𝐹𝑘))) ∧ (sin‘(abs‘(𝐹𝑘))) < (abs‘(𝐹𝑘))))
136135simpld 494 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) − (((abs‘(𝐹𝑘))↑3) / 3)) < (sin‘(abs‘(𝐹𝑘))))
137123, 136eqbrtrd 5161 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((1 − (((𝐹𝑘)↑2) / 3)) · (abs‘(𝐹𝑘))) < (sin‘(abs‘(𝐹𝑘))))
138102resincld 16085 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘(abs‘(𝐹𝑘))) ∈ ℝ)
13984, 138, 124ltmuldivd 13061 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((1 − (((𝐹𝑘)↑2) / 3)) · (abs‘(𝐹𝑘))) < (sin‘(abs‘(𝐹𝑘))) ↔ (1 − (((𝐹𝑘)↑2) / 3)) < ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘)))))
140137, 139mpbid 231 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 − (((𝐹𝑘)↑2) / 3)) < ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))))
141 fveq2 6882 . . . . . . . 8 ((abs‘(𝐹𝑘)) = (𝐹𝑘) → (sin‘(abs‘(𝐹𝑘))) = (sin‘(𝐹𝑘)))
142 id 22 . . . . . . . 8 ((abs‘(𝐹𝑘)) = (𝐹𝑘) → (abs‘(𝐹𝑘)) = (𝐹𝑘))
143141, 142oveq12d 7420 . . . . . . 7 ((abs‘(𝐹𝑘)) = (𝐹𝑘) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
144143a1i 11 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) = (𝐹𝑘) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘(𝐹𝑘)) / (𝐹𝑘))))
145 sinneg 16088 . . . . . . . . . 10 ((𝐹𝑘) ∈ ℂ → (sin‘-(𝐹𝑘)) = -(sin‘(𝐹𝑘)))
14620, 145syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘-(𝐹𝑘)) = -(sin‘(𝐹𝑘)))
147146oveq1d 7417 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘-(𝐹𝑘)) / -(𝐹𝑘)) = (-(sin‘(𝐹𝑘)) / -(𝐹𝑘)))
14896recnd 11240 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘(𝐹𝑘)) ∈ ℂ)
149148, 20, 97div2negd 12003 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (-(sin‘(𝐹𝑘)) / -(𝐹𝑘)) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
150147, 149eqtrd 2764 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘-(𝐹𝑘)) / -(𝐹𝑘)) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
151 fveq2 6882 . . . . . . . . 9 ((abs‘(𝐹𝑘)) = -(𝐹𝑘) → (sin‘(abs‘(𝐹𝑘))) = (sin‘-(𝐹𝑘)))
152 id 22 . . . . . . . . 9 ((abs‘(𝐹𝑘)) = -(𝐹𝑘) → (abs‘(𝐹𝑘)) = -(𝐹𝑘))
153151, 152oveq12d 7420 . . . . . . . 8 ((abs‘(𝐹𝑘)) = -(𝐹𝑘) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘-(𝐹𝑘)) / -(𝐹𝑘)))
154153eqeq1d 2726 . . . . . . 7 ((abs‘(𝐹𝑘)) = -(𝐹𝑘) → (((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)) ↔ ((sin‘-(𝐹𝑘)) / -(𝐹𝑘)) = ((sin‘(𝐹𝑘)) / (𝐹𝑘))))
155150, 154syl5ibrcom 246 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) = -(𝐹𝑘) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘(𝐹𝑘)) / (𝐹𝑘))))
15619absord 15360 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) = (𝐹𝑘) ∨ (abs‘(𝐹𝑘)) = -(𝐹𝑘)))
157144, 155, 156mpjaod 857 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) = ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
158140, 157breqtrd 5165 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 − (((𝐹𝑘)↑2) / 3)) < ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
15984, 98, 158ltled 11360 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → (1 − (((𝐹𝑘)↑2) / 3)) ≤ ((sin‘(𝐹𝑘)) / (𝐹𝑘)))
160159, 77, 953brtr4d 5171 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐻𝐹)‘𝑘) ≤ ((𝐺𝐹)‘𝑘))
16178a1i 11 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → 1 ∈ ℝ)
162135simprd 495 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘(abs‘(𝐹𝑘))) < (abs‘(𝐹𝑘)))
163103mulridd 11229 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((abs‘(𝐹𝑘)) · 1) = (abs‘(𝐹𝑘)))
164162, 163breqtrrd 5167 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (sin‘(abs‘(𝐹𝑘))) < ((abs‘(𝐹𝑘)) · 1))
165138, 161, 124ltdivmuld 13065 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) < 1 ↔ (sin‘(abs‘(𝐹𝑘))) < ((abs‘(𝐹𝑘)) · 1)))
166164, 165mpbird 257 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘(abs‘(𝐹𝑘))) / (abs‘(𝐹𝑘))) < 1)
167157, 166eqbrtrrd 5163 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘(𝐹𝑘)) / (𝐹𝑘)) < 1)
16898, 161, 167ltled 11360 . . 3 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((sin‘(𝐹𝑘)) / (𝐹𝑘)) ≤ 1)
16995, 168eqbrtrd 5161 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐺𝐹)‘𝑘) ≤ 1)
1701, 3, 66, 70, 85, 99, 160, 169climsqz 15583 1 (𝜑 → (𝐺𝐹) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wtru 1534  wcel 2098  wne 2932  wral 3053  wrex 3062  Vcvv 3466  cdif 3938  {csn 4621   class class class wbr 5139  cmpt 5222  ccom 5671  Fun wfun 6528  wf 6530  cfv 6534  (class class class)co 7402  cc 11105  cr 11106  0cc0 11107  1c1 11108   + caddc 11110   · cmul 11112  *cxr 11245   < clt 11246  cle 11247  cmin 11442  -cneg 11443   / cdiv 11869  cn 12210  2c2 12265  3c3 12266  0cn0 12470  cuz 12820  +crp 12972  (,]cioc 13323  cexp 14025  abscabs 15179  cli 15426  sincsin 16005  TopOpenctopn 17368  fldccnfld 21230  TopOnctopon 22736   Cn ccn 23052   ×t ctx 23388  cnccncf 24720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8700  df-map 8819  df-pm 8820  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-fi 9403  df-sup 9434  df-inf 9435  df-oi 9502  df-card 9931  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-dec 12676  df-uz 12821  df-q 12931  df-rp 12973  df-xneg 13090  df-xadd 13091  df-xmul 13092  df-ioc 13327  df-ico 13328  df-icc 13329  df-fz 13483  df-fzo 13626  df-fl 13755  df-seq 13965  df-exp 14026  df-fac 14232  df-hash 14289  df-shft 15012  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15631  df-ef 16009  df-sin 16011  df-struct 17081  df-sets 17098  df-slot 17116  df-ndx 17128  df-base 17146  df-ress 17175  df-plusg 17211  df-mulr 17212  df-starv 17213  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-hom 17222  df-cco 17223  df-rest 17369  df-topn 17370  df-0g 17388  df-gsum 17389  df-topgen 17390  df-pt 17391  df-prds 17394  df-xrs 17449  df-qtop 17454  df-imas 17455  df-xps 17457  df-mre 17531  df-mrc 17532  df-acs 17534  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-mulg 18988  df-cntz 19225  df-cmn 19694  df-psmet 21222  df-xmet 21223  df-met 21224  df-bl 21225  df-mopn 21226  df-cnfld 21231  df-top 22720  df-topon 22737  df-topsp 22759  df-bases 22773  df-cn 23055  df-cnp 23056  df-tx 23390  df-hmeo 23583  df-xms 24150  df-ms 24151  df-tms 24152  df-cncf 24722
This theorem is referenced by:  sinccvg  35149
  Copyright terms: Public domain W3C validator