![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ex-sategoelel12 | Structured version Visualization version GIF version |
Description: Example of a valuation of a simplified satisfaction predicate over a proper pair (of ordinal numbers) as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 1o ∈ 2o = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o∈𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.) |
Ref | Expression |
---|---|
ex-sategoelel12.s | ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o)) |
Ref | Expression |
---|---|
ex-sategoelel12 | ⊢ 𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ex-sategoelel12.s | . . . . 5 ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o)) | |
2 | 1oex 8532 | . . . . . . . 8 ⊢ 1o ∈ V | |
3 | 2 | prid1 4787 | . . . . . . 7 ⊢ 1o ∈ {1o, 2o} |
4 | 2oex 8533 | . . . . . . . 8 ⊢ 2o ∈ V | |
5 | 4 | prid2 4788 | . . . . . . 7 ⊢ 2o ∈ {1o, 2o} |
6 | 3, 5 | ifcli 4595 | . . . . . 6 ⊢ if(𝑥 = 2o, 1o, 2o) ∈ {1o, 2o} |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝑥 ∈ ω → if(𝑥 = 2o, 1o, 2o) ∈ {1o, 2o}) |
8 | 1, 7 | fmpti 7146 | . . . 4 ⊢ 𝑆:ω⟶{1o, 2o} |
9 | prex 5452 | . . . . 5 ⊢ {1o, 2o} ∈ V | |
10 | omex 9712 | . . . . 5 ⊢ ω ∈ V | |
11 | 9, 10 | elmap 8929 | . . . 4 ⊢ (𝑆 ∈ ({1o, 2o} ↑m ω) ↔ 𝑆:ω⟶{1o, 2o}) |
12 | 8, 11 | mpbir 231 | . . 3 ⊢ 𝑆 ∈ ({1o, 2o} ↑m ω) |
13 | 2 | sucid 6477 | . . . . 5 ⊢ 1o ∈ suc 1o |
14 | df-2o 8523 | . . . . 5 ⊢ 2o = suc 1o | |
15 | 13, 14 | eleqtrri 2843 | . . . 4 ⊢ 1o ∈ 2o |
16 | 2onn 8698 | . . . . 5 ⊢ 2o ∈ ω | |
17 | 1onn 8696 | . . . . 5 ⊢ 1o ∈ ω | |
18 | iftrue 4554 | . . . . . 6 ⊢ (𝑥 = 2o → if(𝑥 = 2o, 1o, 2o) = 1o) | |
19 | 18, 1 | fvmptg 7027 | . . . . 5 ⊢ ((2o ∈ ω ∧ 1o ∈ ω) → (𝑆‘2o) = 1o) |
20 | 16, 17, 19 | mp2an 691 | . . . 4 ⊢ (𝑆‘2o) = 1o |
21 | 1one2o 8702 | . . . . . . . . 9 ⊢ 1o ≠ 2o | |
22 | 21 | neii 2948 | . . . . . . . 8 ⊢ ¬ 1o = 2o |
23 | eqeq1 2744 | . . . . . . . 8 ⊢ (𝑥 = 1o → (𝑥 = 2o ↔ 1o = 2o)) | |
24 | 22, 23 | mtbiri 327 | . . . . . . 7 ⊢ (𝑥 = 1o → ¬ 𝑥 = 2o) |
25 | 24 | iffalsed 4559 | . . . . . 6 ⊢ (𝑥 = 1o → if(𝑥 = 2o, 1o, 2o) = 2o) |
26 | 25, 1 | fvmptg 7027 | . . . . 5 ⊢ ((1o ∈ ω ∧ 2o ∈ ω) → (𝑆‘1o) = 2o) |
27 | 17, 16, 26 | mp2an 691 | . . . 4 ⊢ (𝑆‘1o) = 2o |
28 | 15, 20, 27 | 3eltr4i 2857 | . . 3 ⊢ (𝑆‘2o) ∈ (𝑆‘1o) |
29 | 12, 28 | pm3.2i 470 | . 2 ⊢ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)) |
30 | 16, 17 | pm3.2i 470 | . . 3 ⊢ (2o ∈ ω ∧ 1o ∈ ω) |
31 | eqid 2740 | . . . 4 ⊢ ({1o, 2o} Sat∈ (2o∈𝑔1o)) = ({1o, 2o} Sat∈ (2o∈𝑔1o)) | |
32 | 31 | sategoelfvb 35387 | . . 3 ⊢ (({1o, 2o} ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) → (𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)))) |
33 | 9, 30, 32 | mp2an 691 | . 2 ⊢ (𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o))) |
34 | 29, 33 | mpbir 231 | 1 ⊢ 𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ifcif 4548 {cpr 4650 ↦ cmpt 5249 suc csuc 6397 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ωcom 7903 1oc1o 8515 2oc2o 8516 ↑m cmap 8884 ∈𝑔cgoe 35301 Sat∈ csate 35306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-ac2 10532 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-ac 10185 df-goel 35308 df-gona 35309 df-goal 35310 df-sat 35311 df-sate 35312 df-fmla 35313 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |