Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ex-sategoelel12 Structured version   Visualization version   GIF version

Theorem ex-sategoelel12 35414
Description: Example of a valuation of a simplified satisfaction predicate over a proper pair (of ordinal numbers) as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 1o ∈ 2o = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.)
Hypothesis
Ref Expression
ex-sategoelel12.s 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o))
Assertion
Ref Expression
ex-sategoelel12 𝑆 ∈ ({1o, 2o} Sat (2o𝑔1o))

Proof of Theorem ex-sategoelel12
StepHypRef Expression
1 ex-sategoelel12.s . . . . 5 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o))
2 1oex 8444 . . . . . . . 8 1o ∈ V
32prid1 4726 . . . . . . 7 1o ∈ {1o, 2o}
4 2oex 8445 . . . . . . . 8 2o ∈ V
54prid2 4727 . . . . . . 7 2o ∈ {1o, 2o}
63, 5ifcli 4536 . . . . . 6 if(𝑥 = 2o, 1o, 2o) ∈ {1o, 2o}
76a1i 11 . . . . 5 (𝑥 ∈ ω → if(𝑥 = 2o, 1o, 2o) ∈ {1o, 2o})
81, 7fmpti 7084 . . . 4 𝑆:ω⟶{1o, 2o}
9 prex 5392 . . . . 5 {1o, 2o} ∈ V
10 omex 9596 . . . . 5 ω ∈ V
119, 10elmap 8844 . . . 4 (𝑆 ∈ ({1o, 2o} ↑m ω) ↔ 𝑆:ω⟶{1o, 2o})
128, 11mpbir 231 . . 3 𝑆 ∈ ({1o, 2o} ↑m ω)
132sucid 6416 . . . . 5 1o ∈ suc 1o
14 df-2o 8435 . . . . 5 2o = suc 1o
1513, 14eleqtrri 2827 . . . 4 1o ∈ 2o
16 2onn 8606 . . . . 5 2o ∈ ω
17 1onn 8604 . . . . 5 1o ∈ ω
18 iftrue 4494 . . . . . 6 (𝑥 = 2o → if(𝑥 = 2o, 1o, 2o) = 1o)
1918, 1fvmptg 6966 . . . . 5 ((2o ∈ ω ∧ 1o ∈ ω) → (𝑆‘2o) = 1o)
2016, 17, 19mp2an 692 . . . 4 (𝑆‘2o) = 1o
21 1one2o 8610 . . . . . . . . 9 1o ≠ 2o
2221neii 2927 . . . . . . . 8 ¬ 1o = 2o
23 eqeq1 2733 . . . . . . . 8 (𝑥 = 1o → (𝑥 = 2o ↔ 1o = 2o))
2422, 23mtbiri 327 . . . . . . 7 (𝑥 = 1o → ¬ 𝑥 = 2o)
2524iffalsed 4499 . . . . . 6 (𝑥 = 1o → if(𝑥 = 2o, 1o, 2o) = 2o)
2625, 1fvmptg 6966 . . . . 5 ((1o ∈ ω ∧ 2o ∈ ω) → (𝑆‘1o) = 2o)
2717, 16, 26mp2an 692 . . . 4 (𝑆‘1o) = 2o
2815, 20, 273eltr4i 2841 . . 3 (𝑆‘2o) ∈ (𝑆‘1o)
2912, 28pm3.2i 470 . 2 (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o))
3016, 17pm3.2i 470 . . 3 (2o ∈ ω ∧ 1o ∈ ω)
31 eqid 2729 . . . 4 ({1o, 2o} Sat (2o𝑔1o)) = ({1o, 2o} Sat (2o𝑔1o))
3231sategoelfvb 35406 . . 3 (({1o, 2o} ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) → (𝑆 ∈ ({1o, 2o} Sat (2o𝑔1o)) ↔ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o))))
339, 30, 32mp2an 692 . 2 (𝑆 ∈ ({1o, 2o} Sat (2o𝑔1o)) ↔ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)))
3429, 33mpbir 231 1 𝑆 ∈ ({1o, 2o} Sat (2o𝑔1o))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  ifcif 4488  {cpr 4591  cmpt 5188  suc csuc 6334  wf 6507  cfv 6511  (class class class)co 7387  ωcom 7842  1oc1o 8427  2oc2o 8428  m cmap 8799  𝑔cgoe 35320   Sat csate 35325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-ac 10069  df-goel 35327  df-gona 35328  df-goal 35329  df-sat 35330  df-sate 35331  df-fmla 35332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator