Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ex-sategoelel12 Structured version   Visualization version   GIF version

Theorem ex-sategoelel12 35421
Description: Example of a valuation of a simplified satisfaction predicate over a proper pair (of ordinal numbers) as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 1o ∈ 2o = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.)
Hypothesis
Ref Expression
ex-sategoelel12.s 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o))
Assertion
Ref Expression
ex-sategoelel12 𝑆 ∈ ({1o, 2o} Sat (2o𝑔1o))

Proof of Theorem ex-sategoelel12
StepHypRef Expression
1 ex-sategoelel12.s . . . . 5 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o))
2 1oex 8447 . . . . . . . 8 1o ∈ V
32prid1 4729 . . . . . . 7 1o ∈ {1o, 2o}
4 2oex 8448 . . . . . . . 8 2o ∈ V
54prid2 4730 . . . . . . 7 2o ∈ {1o, 2o}
63, 5ifcli 4539 . . . . . 6 if(𝑥 = 2o, 1o, 2o) ∈ {1o, 2o}
76a1i 11 . . . . 5 (𝑥 ∈ ω → if(𝑥 = 2o, 1o, 2o) ∈ {1o, 2o})
81, 7fmpti 7087 . . . 4 𝑆:ω⟶{1o, 2o}
9 prex 5395 . . . . 5 {1o, 2o} ∈ V
10 omex 9603 . . . . 5 ω ∈ V
119, 10elmap 8847 . . . 4 (𝑆 ∈ ({1o, 2o} ↑m ω) ↔ 𝑆:ω⟶{1o, 2o})
128, 11mpbir 231 . . 3 𝑆 ∈ ({1o, 2o} ↑m ω)
132sucid 6419 . . . . 5 1o ∈ suc 1o
14 df-2o 8438 . . . . 5 2o = suc 1o
1513, 14eleqtrri 2828 . . . 4 1o ∈ 2o
16 2onn 8609 . . . . 5 2o ∈ ω
17 1onn 8607 . . . . 5 1o ∈ ω
18 iftrue 4497 . . . . . 6 (𝑥 = 2o → if(𝑥 = 2o, 1o, 2o) = 1o)
1918, 1fvmptg 6969 . . . . 5 ((2o ∈ ω ∧ 1o ∈ ω) → (𝑆‘2o) = 1o)
2016, 17, 19mp2an 692 . . . 4 (𝑆‘2o) = 1o
21 1one2o 8613 . . . . . . . . 9 1o ≠ 2o
2221neii 2928 . . . . . . . 8 ¬ 1o = 2o
23 eqeq1 2734 . . . . . . . 8 (𝑥 = 1o → (𝑥 = 2o ↔ 1o = 2o))
2422, 23mtbiri 327 . . . . . . 7 (𝑥 = 1o → ¬ 𝑥 = 2o)
2524iffalsed 4502 . . . . . 6 (𝑥 = 1o → if(𝑥 = 2o, 1o, 2o) = 2o)
2625, 1fvmptg 6969 . . . . 5 ((1o ∈ ω ∧ 2o ∈ ω) → (𝑆‘1o) = 2o)
2717, 16, 26mp2an 692 . . . 4 (𝑆‘1o) = 2o
2815, 20, 273eltr4i 2842 . . 3 (𝑆‘2o) ∈ (𝑆‘1o)
2912, 28pm3.2i 470 . 2 (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o))
3016, 17pm3.2i 470 . . 3 (2o ∈ ω ∧ 1o ∈ ω)
31 eqid 2730 . . . 4 ({1o, 2o} Sat (2o𝑔1o)) = ({1o, 2o} Sat (2o𝑔1o))
3231sategoelfvb 35413 . . 3 (({1o, 2o} ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) → (𝑆 ∈ ({1o, 2o} Sat (2o𝑔1o)) ↔ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o))))
339, 30, 32mp2an 692 . 2 (𝑆 ∈ ({1o, 2o} Sat (2o𝑔1o)) ↔ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)))
3429, 33mpbir 231 1 𝑆 ∈ ({1o, 2o} Sat (2o𝑔1o))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  ifcif 4491  {cpr 4594  cmpt 5191  suc csuc 6337  wf 6510  cfv 6514  (class class class)co 7390  ωcom 7845  1oc1o 8430  2oc2o 8431  m cmap 8802  𝑔cgoe 35327   Sat csate 35332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-ac 10076  df-goel 35334  df-gona 35335  df-goal 35336  df-sat 35337  df-sate 35338  df-fmla 35339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator