| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ex-sategoelel12 | Structured version Visualization version GIF version | ||
| Description: Example of a valuation of a simplified satisfaction predicate over a proper pair (of ordinal numbers) as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 1o ∈ 2o = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o∈𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.) |
| Ref | Expression |
|---|---|
| ex-sategoelel12.s | ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o)) |
| Ref | Expression |
|---|---|
| ex-sategoelel12 | ⊢ 𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ex-sategoelel12.s | . . . . 5 ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o)) | |
| 2 | 1oex 8490 | . . . . . . . 8 ⊢ 1o ∈ V | |
| 3 | 2 | prid1 4738 | . . . . . . 7 ⊢ 1o ∈ {1o, 2o} |
| 4 | 2oex 8491 | . . . . . . . 8 ⊢ 2o ∈ V | |
| 5 | 4 | prid2 4739 | . . . . . . 7 ⊢ 2o ∈ {1o, 2o} |
| 6 | 3, 5 | ifcli 4548 | . . . . . 6 ⊢ if(𝑥 = 2o, 1o, 2o) ∈ {1o, 2o} |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝑥 ∈ ω → if(𝑥 = 2o, 1o, 2o) ∈ {1o, 2o}) |
| 8 | 1, 7 | fmpti 7102 | . . . 4 ⊢ 𝑆:ω⟶{1o, 2o} |
| 9 | prex 5407 | . . . . 5 ⊢ {1o, 2o} ∈ V | |
| 10 | omex 9657 | . . . . 5 ⊢ ω ∈ V | |
| 11 | 9, 10 | elmap 8885 | . . . 4 ⊢ (𝑆 ∈ ({1o, 2o} ↑m ω) ↔ 𝑆:ω⟶{1o, 2o}) |
| 12 | 8, 11 | mpbir 231 | . . 3 ⊢ 𝑆 ∈ ({1o, 2o} ↑m ω) |
| 13 | 2 | sucid 6436 | . . . . 5 ⊢ 1o ∈ suc 1o |
| 14 | df-2o 8481 | . . . . 5 ⊢ 2o = suc 1o | |
| 15 | 13, 14 | eleqtrri 2833 | . . . 4 ⊢ 1o ∈ 2o |
| 16 | 2onn 8654 | . . . . 5 ⊢ 2o ∈ ω | |
| 17 | 1onn 8652 | . . . . 5 ⊢ 1o ∈ ω | |
| 18 | iftrue 4506 | . . . . . 6 ⊢ (𝑥 = 2o → if(𝑥 = 2o, 1o, 2o) = 1o) | |
| 19 | 18, 1 | fvmptg 6984 | . . . . 5 ⊢ ((2o ∈ ω ∧ 1o ∈ ω) → (𝑆‘2o) = 1o) |
| 20 | 16, 17, 19 | mp2an 692 | . . . 4 ⊢ (𝑆‘2o) = 1o |
| 21 | 1one2o 8658 | . . . . . . . . 9 ⊢ 1o ≠ 2o | |
| 22 | 21 | neii 2934 | . . . . . . . 8 ⊢ ¬ 1o = 2o |
| 23 | eqeq1 2739 | . . . . . . . 8 ⊢ (𝑥 = 1o → (𝑥 = 2o ↔ 1o = 2o)) | |
| 24 | 22, 23 | mtbiri 327 | . . . . . . 7 ⊢ (𝑥 = 1o → ¬ 𝑥 = 2o) |
| 25 | 24 | iffalsed 4511 | . . . . . 6 ⊢ (𝑥 = 1o → if(𝑥 = 2o, 1o, 2o) = 2o) |
| 26 | 25, 1 | fvmptg 6984 | . . . . 5 ⊢ ((1o ∈ ω ∧ 2o ∈ ω) → (𝑆‘1o) = 2o) |
| 27 | 17, 16, 26 | mp2an 692 | . . . 4 ⊢ (𝑆‘1o) = 2o |
| 28 | 15, 20, 27 | 3eltr4i 2847 | . . 3 ⊢ (𝑆‘2o) ∈ (𝑆‘1o) |
| 29 | 12, 28 | pm3.2i 470 | . 2 ⊢ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)) |
| 30 | 16, 17 | pm3.2i 470 | . . 3 ⊢ (2o ∈ ω ∧ 1o ∈ ω) |
| 31 | eqid 2735 | . . . 4 ⊢ ({1o, 2o} Sat∈ (2o∈𝑔1o)) = ({1o, 2o} Sat∈ (2o∈𝑔1o)) | |
| 32 | 31 | sategoelfvb 35441 | . . 3 ⊢ (({1o, 2o} ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) → (𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)))) |
| 33 | 9, 30, 32 | mp2an 692 | . 2 ⊢ (𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o))) |
| 34 | 29, 33 | mpbir 231 | 1 ⊢ 𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ifcif 4500 {cpr 4603 ↦ cmpt 5201 suc csuc 6354 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ωcom 7861 1oc1o 8473 2oc2o 8474 ↑m cmap 8840 ∈𝑔cgoe 35355 Sat∈ csate 35360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-ac2 10477 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-ac 10130 df-goel 35362 df-gona 35363 df-goal 35364 df-sat 35365 df-sate 35366 df-fmla 35367 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |