Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ex-sategoelel12 Structured version   Visualization version   GIF version

Theorem ex-sategoelel12 33524
Description: Example of a valuation of a simplified satisfaction predicate over a proper pair (of ordinal numbers) as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 1o ∈ 2o = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.)
Hypothesis
Ref Expression
ex-sategoelel12.s 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o))
Assertion
Ref Expression
ex-sategoelel12 𝑆 ∈ ({1o, 2o} Sat (2o𝑔1o))

Proof of Theorem ex-sategoelel12
StepHypRef Expression
1 ex-sategoelel12.s . . . . 5 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o))
2 1oex 8355 . . . . . . . 8 1o ∈ V
32prid1 4707 . . . . . . 7 1o ∈ {1o, 2o}
4 2oex 8356 . . . . . . . 8 2o ∈ V
54prid2 4708 . . . . . . 7 2o ∈ {1o, 2o}
63, 5ifcli 4517 . . . . . 6 if(𝑥 = 2o, 1o, 2o) ∈ {1o, 2o}
76a1i 11 . . . . 5 (𝑥 ∈ ω → if(𝑥 = 2o, 1o, 2o) ∈ {1o, 2o})
81, 7fmpti 7025 . . . 4 𝑆:ω⟶{1o, 2o}
9 prex 5369 . . . . 5 {1o, 2o} ∈ V
10 omex 9478 . . . . 5 ω ∈ V
119, 10elmap 8708 . . . 4 (𝑆 ∈ ({1o, 2o} ↑m ω) ↔ 𝑆:ω⟶{1o, 2o})
128, 11mpbir 230 . . 3 𝑆 ∈ ({1o, 2o} ↑m ω)
132sucid 6369 . . . . 5 1o ∈ suc 1o
14 df-2o 8346 . . . . 5 2o = suc 1o
1513, 14eleqtrri 2836 . . . 4 1o ∈ 2o
16 2onn 8521 . . . . 5 2o ∈ ω
17 1onn 8519 . . . . 5 1o ∈ ω
18 iftrue 4476 . . . . . 6 (𝑥 = 2o → if(𝑥 = 2o, 1o, 2o) = 1o)
1918, 1fvmptg 6912 . . . . 5 ((2o ∈ ω ∧ 1o ∈ ω) → (𝑆‘2o) = 1o)
2016, 17, 19mp2an 689 . . . 4 (𝑆‘2o) = 1o
21 1one2o 8525 . . . . . . . . 9 1o ≠ 2o
2221neii 2942 . . . . . . . 8 ¬ 1o = 2o
23 eqeq1 2740 . . . . . . . 8 (𝑥 = 1o → (𝑥 = 2o ↔ 1o = 2o))
2422, 23mtbiri 326 . . . . . . 7 (𝑥 = 1o → ¬ 𝑥 = 2o)
2524iffalsed 4481 . . . . . 6 (𝑥 = 1o → if(𝑥 = 2o, 1o, 2o) = 2o)
2625, 1fvmptg 6912 . . . . 5 ((1o ∈ ω ∧ 2o ∈ ω) → (𝑆‘1o) = 2o)
2717, 16, 26mp2an 689 . . . 4 (𝑆‘1o) = 2o
2815, 20, 273eltr4i 2850 . . 3 (𝑆‘2o) ∈ (𝑆‘1o)
2912, 28pm3.2i 471 . 2 (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o))
3016, 17pm3.2i 471 . . 3 (2o ∈ ω ∧ 1o ∈ ω)
31 eqid 2736 . . . 4 ({1o, 2o} Sat (2o𝑔1o)) = ({1o, 2o} Sat (2o𝑔1o))
3231sategoelfvb 33516 . . 3 (({1o, 2o} ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) → (𝑆 ∈ ({1o, 2o} Sat (2o𝑔1o)) ↔ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o))))
339, 30, 32mp2an 689 . 2 (𝑆 ∈ ({1o, 2o} Sat (2o𝑔1o)) ↔ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)))
3429, 33mpbir 230 1 𝑆 ∈ ({1o, 2o} Sat (2o𝑔1o))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1540  wcel 2105  Vcvv 3440  ifcif 4470  {cpr 4572  cmpt 5169  suc csuc 6290  wf 6461  cfv 6465  (class class class)co 7316  ωcom 7758  1oc1o 8338  2oc2o 8339  m cmap 8664  𝑔cgoe 33430   Sat csate 33435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-inf2 9476  ax-ac2 10298
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-isom 6474  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-2o 8346  df-er 8547  df-map 8666  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-card 9774  df-ac 9951  df-goel 33437  df-gona 33438  df-goal 33439  df-sat 33440  df-sate 33441  df-fmla 33442
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator