| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ex-sategoelel12 | Structured version Visualization version GIF version | ||
| Description: Example of a valuation of a simplified satisfaction predicate over a proper pair (of ordinal numbers) as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 1o ∈ 2o = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o∈𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.) |
| Ref | Expression |
|---|---|
| ex-sategoelel12.s | ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o)) |
| Ref | Expression |
|---|---|
| ex-sategoelel12 | ⊢ 𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ex-sategoelel12.s | . . . . 5 ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o)) | |
| 2 | 1oex 8444 | . . . . . . . 8 ⊢ 1o ∈ V | |
| 3 | 2 | prid1 4726 | . . . . . . 7 ⊢ 1o ∈ {1o, 2o} |
| 4 | 2oex 8445 | . . . . . . . 8 ⊢ 2o ∈ V | |
| 5 | 4 | prid2 4727 | . . . . . . 7 ⊢ 2o ∈ {1o, 2o} |
| 6 | 3, 5 | ifcli 4536 | . . . . . 6 ⊢ if(𝑥 = 2o, 1o, 2o) ∈ {1o, 2o} |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝑥 ∈ ω → if(𝑥 = 2o, 1o, 2o) ∈ {1o, 2o}) |
| 8 | 1, 7 | fmpti 7084 | . . . 4 ⊢ 𝑆:ω⟶{1o, 2o} |
| 9 | prex 5392 | . . . . 5 ⊢ {1o, 2o} ∈ V | |
| 10 | omex 9596 | . . . . 5 ⊢ ω ∈ V | |
| 11 | 9, 10 | elmap 8844 | . . . 4 ⊢ (𝑆 ∈ ({1o, 2o} ↑m ω) ↔ 𝑆:ω⟶{1o, 2o}) |
| 12 | 8, 11 | mpbir 231 | . . 3 ⊢ 𝑆 ∈ ({1o, 2o} ↑m ω) |
| 13 | 2 | sucid 6416 | . . . . 5 ⊢ 1o ∈ suc 1o |
| 14 | df-2o 8435 | . . . . 5 ⊢ 2o = suc 1o | |
| 15 | 13, 14 | eleqtrri 2827 | . . . 4 ⊢ 1o ∈ 2o |
| 16 | 2onn 8606 | . . . . 5 ⊢ 2o ∈ ω | |
| 17 | 1onn 8604 | . . . . 5 ⊢ 1o ∈ ω | |
| 18 | iftrue 4494 | . . . . . 6 ⊢ (𝑥 = 2o → if(𝑥 = 2o, 1o, 2o) = 1o) | |
| 19 | 18, 1 | fvmptg 6966 | . . . . 5 ⊢ ((2o ∈ ω ∧ 1o ∈ ω) → (𝑆‘2o) = 1o) |
| 20 | 16, 17, 19 | mp2an 692 | . . . 4 ⊢ (𝑆‘2o) = 1o |
| 21 | 1one2o 8610 | . . . . . . . . 9 ⊢ 1o ≠ 2o | |
| 22 | 21 | neii 2927 | . . . . . . . 8 ⊢ ¬ 1o = 2o |
| 23 | eqeq1 2733 | . . . . . . . 8 ⊢ (𝑥 = 1o → (𝑥 = 2o ↔ 1o = 2o)) | |
| 24 | 22, 23 | mtbiri 327 | . . . . . . 7 ⊢ (𝑥 = 1o → ¬ 𝑥 = 2o) |
| 25 | 24 | iffalsed 4499 | . . . . . 6 ⊢ (𝑥 = 1o → if(𝑥 = 2o, 1o, 2o) = 2o) |
| 26 | 25, 1 | fvmptg 6966 | . . . . 5 ⊢ ((1o ∈ ω ∧ 2o ∈ ω) → (𝑆‘1o) = 2o) |
| 27 | 17, 16, 26 | mp2an 692 | . . . 4 ⊢ (𝑆‘1o) = 2o |
| 28 | 15, 20, 27 | 3eltr4i 2841 | . . 3 ⊢ (𝑆‘2o) ∈ (𝑆‘1o) |
| 29 | 12, 28 | pm3.2i 470 | . 2 ⊢ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)) |
| 30 | 16, 17 | pm3.2i 470 | . . 3 ⊢ (2o ∈ ω ∧ 1o ∈ ω) |
| 31 | eqid 2729 | . . . 4 ⊢ ({1o, 2o} Sat∈ (2o∈𝑔1o)) = ({1o, 2o} Sat∈ (2o∈𝑔1o)) | |
| 32 | 31 | sategoelfvb 35406 | . . 3 ⊢ (({1o, 2o} ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) → (𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)))) |
| 33 | 9, 30, 32 | mp2an 692 | . 2 ⊢ (𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o))) |
| 34 | 29, 33 | mpbir 231 | 1 ⊢ 𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ifcif 4488 {cpr 4591 ↦ cmpt 5188 suc csuc 6334 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ωcom 7842 1oc1o 8427 2oc2o 8428 ↑m cmap 8799 ∈𝑔cgoe 35320 Sat∈ csate 35325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-ac2 10416 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-ac 10069 df-goel 35327 df-gona 35328 df-goal 35329 df-sat 35330 df-sate 35331 df-fmla 35332 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |