| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ex-sategoelel12 | Structured version Visualization version GIF version | ||
| Description: Example of a valuation of a simplified satisfaction predicate over a proper pair (of ordinal numbers) as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 1o ∈ 2o = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o∈𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.) |
| Ref | Expression |
|---|---|
| ex-sategoelel12.s | ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o)) |
| Ref | Expression |
|---|---|
| ex-sategoelel12 | ⊢ 𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ex-sategoelel12.s | . . . . 5 ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o)) | |
| 2 | 1oex 8421 | . . . . . . . 8 ⊢ 1o ∈ V | |
| 3 | 2 | prid1 4722 | . . . . . . 7 ⊢ 1o ∈ {1o, 2o} |
| 4 | 2oex 8422 | . . . . . . . 8 ⊢ 2o ∈ V | |
| 5 | 4 | prid2 4723 | . . . . . . 7 ⊢ 2o ∈ {1o, 2o} |
| 6 | 3, 5 | ifcli 4532 | . . . . . 6 ⊢ if(𝑥 = 2o, 1o, 2o) ∈ {1o, 2o} |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝑥 ∈ ω → if(𝑥 = 2o, 1o, 2o) ∈ {1o, 2o}) |
| 8 | 1, 7 | fmpti 7066 | . . . 4 ⊢ 𝑆:ω⟶{1o, 2o} |
| 9 | prex 5387 | . . . . 5 ⊢ {1o, 2o} ∈ V | |
| 10 | omex 9572 | . . . . 5 ⊢ ω ∈ V | |
| 11 | 9, 10 | elmap 8821 | . . . 4 ⊢ (𝑆 ∈ ({1o, 2o} ↑m ω) ↔ 𝑆:ω⟶{1o, 2o}) |
| 12 | 8, 11 | mpbir 231 | . . 3 ⊢ 𝑆 ∈ ({1o, 2o} ↑m ω) |
| 13 | 2 | sucid 6404 | . . . . 5 ⊢ 1o ∈ suc 1o |
| 14 | df-2o 8412 | . . . . 5 ⊢ 2o = suc 1o | |
| 15 | 13, 14 | eleqtrri 2827 | . . . 4 ⊢ 1o ∈ 2o |
| 16 | 2onn 8583 | . . . . 5 ⊢ 2o ∈ ω | |
| 17 | 1onn 8581 | . . . . 5 ⊢ 1o ∈ ω | |
| 18 | iftrue 4490 | . . . . . 6 ⊢ (𝑥 = 2o → if(𝑥 = 2o, 1o, 2o) = 1o) | |
| 19 | 18, 1 | fvmptg 6948 | . . . . 5 ⊢ ((2o ∈ ω ∧ 1o ∈ ω) → (𝑆‘2o) = 1o) |
| 20 | 16, 17, 19 | mp2an 692 | . . . 4 ⊢ (𝑆‘2o) = 1o |
| 21 | 1one2o 8587 | . . . . . . . . 9 ⊢ 1o ≠ 2o | |
| 22 | 21 | neii 2927 | . . . . . . . 8 ⊢ ¬ 1o = 2o |
| 23 | eqeq1 2733 | . . . . . . . 8 ⊢ (𝑥 = 1o → (𝑥 = 2o ↔ 1o = 2o)) | |
| 24 | 22, 23 | mtbiri 327 | . . . . . . 7 ⊢ (𝑥 = 1o → ¬ 𝑥 = 2o) |
| 25 | 24 | iffalsed 4495 | . . . . . 6 ⊢ (𝑥 = 1o → if(𝑥 = 2o, 1o, 2o) = 2o) |
| 26 | 25, 1 | fvmptg 6948 | . . . . 5 ⊢ ((1o ∈ ω ∧ 2o ∈ ω) → (𝑆‘1o) = 2o) |
| 27 | 17, 16, 26 | mp2an 692 | . . . 4 ⊢ (𝑆‘1o) = 2o |
| 28 | 15, 20, 27 | 3eltr4i 2841 | . . 3 ⊢ (𝑆‘2o) ∈ (𝑆‘1o) |
| 29 | 12, 28 | pm3.2i 470 | . 2 ⊢ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)) |
| 30 | 16, 17 | pm3.2i 470 | . . 3 ⊢ (2o ∈ ω ∧ 1o ∈ ω) |
| 31 | eqid 2729 | . . . 4 ⊢ ({1o, 2o} Sat∈ (2o∈𝑔1o)) = ({1o, 2o} Sat∈ (2o∈𝑔1o)) | |
| 32 | 31 | sategoelfvb 35379 | . . 3 ⊢ (({1o, 2o} ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) → (𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)))) |
| 33 | 9, 30, 32 | mp2an 692 | . 2 ⊢ (𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o))) |
| 34 | 29, 33 | mpbir 231 | 1 ⊢ 𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ifcif 4484 {cpr 4587 ↦ cmpt 5183 suc csuc 6322 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ωcom 7822 1oc1o 8404 2oc2o 8405 ↑m cmap 8776 ∈𝑔cgoe 35293 Sat∈ csate 35298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-ac2 10392 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-ac 10045 df-goel 35300 df-gona 35301 df-goal 35302 df-sat 35303 df-sate 35304 df-fmla 35305 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |