Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ex-sategoelel12 | Structured version Visualization version GIF version |
Description: Example of a valuation of a simplified satisfaction predicate over a proper pair (of ordinal numbers) as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 1o ∈ 2o = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o∈𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.) |
Ref | Expression |
---|---|
ex-sategoelel12.s | ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o)) |
Ref | Expression |
---|---|
ex-sategoelel12 | ⊢ 𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ex-sategoelel12.s | . . . . 5 ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o)) | |
2 | 1oex 8355 | . . . . . . . 8 ⊢ 1o ∈ V | |
3 | 2 | prid1 4707 | . . . . . . 7 ⊢ 1o ∈ {1o, 2o} |
4 | 2oex 8356 | . . . . . . . 8 ⊢ 2o ∈ V | |
5 | 4 | prid2 4708 | . . . . . . 7 ⊢ 2o ∈ {1o, 2o} |
6 | 3, 5 | ifcli 4517 | . . . . . 6 ⊢ if(𝑥 = 2o, 1o, 2o) ∈ {1o, 2o} |
7 | 6 | a1i 11 | . . . . 5 ⊢ (𝑥 ∈ ω → if(𝑥 = 2o, 1o, 2o) ∈ {1o, 2o}) |
8 | 1, 7 | fmpti 7025 | . . . 4 ⊢ 𝑆:ω⟶{1o, 2o} |
9 | prex 5369 | . . . . 5 ⊢ {1o, 2o} ∈ V | |
10 | omex 9478 | . . . . 5 ⊢ ω ∈ V | |
11 | 9, 10 | elmap 8708 | . . . 4 ⊢ (𝑆 ∈ ({1o, 2o} ↑m ω) ↔ 𝑆:ω⟶{1o, 2o}) |
12 | 8, 11 | mpbir 230 | . . 3 ⊢ 𝑆 ∈ ({1o, 2o} ↑m ω) |
13 | 2 | sucid 6369 | . . . . 5 ⊢ 1o ∈ suc 1o |
14 | df-2o 8346 | . . . . 5 ⊢ 2o = suc 1o | |
15 | 13, 14 | eleqtrri 2836 | . . . 4 ⊢ 1o ∈ 2o |
16 | 2onn 8521 | . . . . 5 ⊢ 2o ∈ ω | |
17 | 1onn 8519 | . . . . 5 ⊢ 1o ∈ ω | |
18 | iftrue 4476 | . . . . . 6 ⊢ (𝑥 = 2o → if(𝑥 = 2o, 1o, 2o) = 1o) | |
19 | 18, 1 | fvmptg 6912 | . . . . 5 ⊢ ((2o ∈ ω ∧ 1o ∈ ω) → (𝑆‘2o) = 1o) |
20 | 16, 17, 19 | mp2an 689 | . . . 4 ⊢ (𝑆‘2o) = 1o |
21 | 1one2o 8525 | . . . . . . . . 9 ⊢ 1o ≠ 2o | |
22 | 21 | neii 2942 | . . . . . . . 8 ⊢ ¬ 1o = 2o |
23 | eqeq1 2740 | . . . . . . . 8 ⊢ (𝑥 = 1o → (𝑥 = 2o ↔ 1o = 2o)) | |
24 | 22, 23 | mtbiri 326 | . . . . . . 7 ⊢ (𝑥 = 1o → ¬ 𝑥 = 2o) |
25 | 24 | iffalsed 4481 | . . . . . 6 ⊢ (𝑥 = 1o → if(𝑥 = 2o, 1o, 2o) = 2o) |
26 | 25, 1 | fvmptg 6912 | . . . . 5 ⊢ ((1o ∈ ω ∧ 2o ∈ ω) → (𝑆‘1o) = 2o) |
27 | 17, 16, 26 | mp2an 689 | . . . 4 ⊢ (𝑆‘1o) = 2o |
28 | 15, 20, 27 | 3eltr4i 2850 | . . 3 ⊢ (𝑆‘2o) ∈ (𝑆‘1o) |
29 | 12, 28 | pm3.2i 471 | . 2 ⊢ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)) |
30 | 16, 17 | pm3.2i 471 | . . 3 ⊢ (2o ∈ ω ∧ 1o ∈ ω) |
31 | eqid 2736 | . . . 4 ⊢ ({1o, 2o} Sat∈ (2o∈𝑔1o)) = ({1o, 2o} Sat∈ (2o∈𝑔1o)) | |
32 | 31 | sategoelfvb 33516 | . . 3 ⊢ (({1o, 2o} ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) → (𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)))) |
33 | 9, 30, 32 | mp2an 689 | . 2 ⊢ (𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o))) |
34 | 29, 33 | mpbir 230 | 1 ⊢ 𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3440 ifcif 4470 {cpr 4572 ↦ cmpt 5169 suc csuc 6290 ⟶wf 6461 ‘cfv 6465 (class class class)co 7316 ωcom 7758 1oc1o 8338 2oc2o 8339 ↑m cmap 8664 ∈𝑔cgoe 33430 Sat∈ csate 33435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-inf2 9476 ax-ac2 10298 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-2o 8346 df-er 8547 df-map 8666 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-card 9774 df-ac 9951 df-goel 33437 df-gona 33438 df-goal 33439 df-sat 33440 df-sate 33441 df-fmla 33442 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |