| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ex-sategoelel12 | Structured version Visualization version GIF version | ||
| Description: Example of a valuation of a simplified satisfaction predicate over a proper pair (of ordinal numbers) as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 1o ∈ 2o = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o∈𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.) |
| Ref | Expression |
|---|---|
| ex-sategoelel12.s | ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o)) |
| Ref | Expression |
|---|---|
| ex-sategoelel12 | ⊢ 𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ex-sategoelel12.s | . . . . 5 ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o)) | |
| 2 | 1oex 8447 | . . . . . . . 8 ⊢ 1o ∈ V | |
| 3 | 2 | prid1 4729 | . . . . . . 7 ⊢ 1o ∈ {1o, 2o} |
| 4 | 2oex 8448 | . . . . . . . 8 ⊢ 2o ∈ V | |
| 5 | 4 | prid2 4730 | . . . . . . 7 ⊢ 2o ∈ {1o, 2o} |
| 6 | 3, 5 | ifcli 4539 | . . . . . 6 ⊢ if(𝑥 = 2o, 1o, 2o) ∈ {1o, 2o} |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝑥 ∈ ω → if(𝑥 = 2o, 1o, 2o) ∈ {1o, 2o}) |
| 8 | 1, 7 | fmpti 7087 | . . . 4 ⊢ 𝑆:ω⟶{1o, 2o} |
| 9 | prex 5395 | . . . . 5 ⊢ {1o, 2o} ∈ V | |
| 10 | omex 9603 | . . . . 5 ⊢ ω ∈ V | |
| 11 | 9, 10 | elmap 8847 | . . . 4 ⊢ (𝑆 ∈ ({1o, 2o} ↑m ω) ↔ 𝑆:ω⟶{1o, 2o}) |
| 12 | 8, 11 | mpbir 231 | . . 3 ⊢ 𝑆 ∈ ({1o, 2o} ↑m ω) |
| 13 | 2 | sucid 6419 | . . . . 5 ⊢ 1o ∈ suc 1o |
| 14 | df-2o 8438 | . . . . 5 ⊢ 2o = suc 1o | |
| 15 | 13, 14 | eleqtrri 2828 | . . . 4 ⊢ 1o ∈ 2o |
| 16 | 2onn 8609 | . . . . 5 ⊢ 2o ∈ ω | |
| 17 | 1onn 8607 | . . . . 5 ⊢ 1o ∈ ω | |
| 18 | iftrue 4497 | . . . . . 6 ⊢ (𝑥 = 2o → if(𝑥 = 2o, 1o, 2o) = 1o) | |
| 19 | 18, 1 | fvmptg 6969 | . . . . 5 ⊢ ((2o ∈ ω ∧ 1o ∈ ω) → (𝑆‘2o) = 1o) |
| 20 | 16, 17, 19 | mp2an 692 | . . . 4 ⊢ (𝑆‘2o) = 1o |
| 21 | 1one2o 8613 | . . . . . . . . 9 ⊢ 1o ≠ 2o | |
| 22 | 21 | neii 2928 | . . . . . . . 8 ⊢ ¬ 1o = 2o |
| 23 | eqeq1 2734 | . . . . . . . 8 ⊢ (𝑥 = 1o → (𝑥 = 2o ↔ 1o = 2o)) | |
| 24 | 22, 23 | mtbiri 327 | . . . . . . 7 ⊢ (𝑥 = 1o → ¬ 𝑥 = 2o) |
| 25 | 24 | iffalsed 4502 | . . . . . 6 ⊢ (𝑥 = 1o → if(𝑥 = 2o, 1o, 2o) = 2o) |
| 26 | 25, 1 | fvmptg 6969 | . . . . 5 ⊢ ((1o ∈ ω ∧ 2o ∈ ω) → (𝑆‘1o) = 2o) |
| 27 | 17, 16, 26 | mp2an 692 | . . . 4 ⊢ (𝑆‘1o) = 2o |
| 28 | 15, 20, 27 | 3eltr4i 2842 | . . 3 ⊢ (𝑆‘2o) ∈ (𝑆‘1o) |
| 29 | 12, 28 | pm3.2i 470 | . 2 ⊢ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)) |
| 30 | 16, 17 | pm3.2i 470 | . . 3 ⊢ (2o ∈ ω ∧ 1o ∈ ω) |
| 31 | eqid 2730 | . . . 4 ⊢ ({1o, 2o} Sat∈ (2o∈𝑔1o)) = ({1o, 2o} Sat∈ (2o∈𝑔1o)) | |
| 32 | 31 | sategoelfvb 35413 | . . 3 ⊢ (({1o, 2o} ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) → (𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)))) |
| 33 | 9, 30, 32 | mp2an 692 | . 2 ⊢ (𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o))) |
| 34 | 29, 33 | mpbir 231 | 1 ⊢ 𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ifcif 4491 {cpr 4594 ↦ cmpt 5191 suc csuc 6337 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ωcom 7845 1oc1o 8430 2oc2o 8431 ↑m cmap 8802 ∈𝑔cgoe 35327 Sat∈ csate 35332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-ac2 10423 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-ac 10076 df-goel 35334 df-gona 35335 df-goal 35336 df-sat 35337 df-sate 35338 df-fmla 35339 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |