| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ex-sategoelel12 | Structured version Visualization version GIF version | ||
| Description: Example of a valuation of a simplified satisfaction predicate over a proper pair (of ordinal numbers) as model for a Godel-set of membership using the properties of a successor: (𝑆‘2o) = 1o ∈ 2o = (𝑆‘2o). Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: (2o∈𝑔1o) should not be confused with 2o ∈ 1o, which is false. (Contributed by AV, 19-Nov-2023.) |
| Ref | Expression |
|---|---|
| ex-sategoelel12.s | ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o)) |
| Ref | Expression |
|---|---|
| ex-sategoelel12 | ⊢ 𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ex-sategoelel12.s | . . . . 5 ⊢ 𝑆 = (𝑥 ∈ ω ↦ if(𝑥 = 2o, 1o, 2o)) | |
| 2 | 1oex 8395 | . . . . . . . 8 ⊢ 1o ∈ V | |
| 3 | 2 | prid1 4712 | . . . . . . 7 ⊢ 1o ∈ {1o, 2o} |
| 4 | 2oex 8396 | . . . . . . . 8 ⊢ 2o ∈ V | |
| 5 | 4 | prid2 4713 | . . . . . . 7 ⊢ 2o ∈ {1o, 2o} |
| 6 | 3, 5 | ifcli 4520 | . . . . . 6 ⊢ if(𝑥 = 2o, 1o, 2o) ∈ {1o, 2o} |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (𝑥 ∈ ω → if(𝑥 = 2o, 1o, 2o) ∈ {1o, 2o}) |
| 8 | 1, 7 | fmpti 7045 | . . . 4 ⊢ 𝑆:ω⟶{1o, 2o} |
| 9 | prex 5373 | . . . . 5 ⊢ {1o, 2o} ∈ V | |
| 10 | omex 9533 | . . . . 5 ⊢ ω ∈ V | |
| 11 | 9, 10 | elmap 8795 | . . . 4 ⊢ (𝑆 ∈ ({1o, 2o} ↑m ω) ↔ 𝑆:ω⟶{1o, 2o}) |
| 12 | 8, 11 | mpbir 231 | . . 3 ⊢ 𝑆 ∈ ({1o, 2o} ↑m ω) |
| 13 | 2 | sucid 6390 | . . . . 5 ⊢ 1o ∈ suc 1o |
| 14 | df-2o 8386 | . . . . 5 ⊢ 2o = suc 1o | |
| 15 | 13, 14 | eleqtrri 2830 | . . . 4 ⊢ 1o ∈ 2o |
| 16 | 2onn 8557 | . . . . 5 ⊢ 2o ∈ ω | |
| 17 | 1onn 8555 | . . . . 5 ⊢ 1o ∈ ω | |
| 18 | iftrue 4478 | . . . . . 6 ⊢ (𝑥 = 2o → if(𝑥 = 2o, 1o, 2o) = 1o) | |
| 19 | 18, 1 | fvmptg 6927 | . . . . 5 ⊢ ((2o ∈ ω ∧ 1o ∈ ω) → (𝑆‘2o) = 1o) |
| 20 | 16, 17, 19 | mp2an 692 | . . . 4 ⊢ (𝑆‘2o) = 1o |
| 21 | 1one2o 8561 | . . . . . . . . 9 ⊢ 1o ≠ 2o | |
| 22 | 21 | neii 2930 | . . . . . . . 8 ⊢ ¬ 1o = 2o |
| 23 | eqeq1 2735 | . . . . . . . 8 ⊢ (𝑥 = 1o → (𝑥 = 2o ↔ 1o = 2o)) | |
| 24 | 22, 23 | mtbiri 327 | . . . . . . 7 ⊢ (𝑥 = 1o → ¬ 𝑥 = 2o) |
| 25 | 24 | iffalsed 4483 | . . . . . 6 ⊢ (𝑥 = 1o → if(𝑥 = 2o, 1o, 2o) = 2o) |
| 26 | 25, 1 | fvmptg 6927 | . . . . 5 ⊢ ((1o ∈ ω ∧ 2o ∈ ω) → (𝑆‘1o) = 2o) |
| 27 | 17, 16, 26 | mp2an 692 | . . . 4 ⊢ (𝑆‘1o) = 2o |
| 28 | 15, 20, 27 | 3eltr4i 2844 | . . 3 ⊢ (𝑆‘2o) ∈ (𝑆‘1o) |
| 29 | 12, 28 | pm3.2i 470 | . 2 ⊢ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)) |
| 30 | 16, 17 | pm3.2i 470 | . . 3 ⊢ (2o ∈ ω ∧ 1o ∈ ω) |
| 31 | eqid 2731 | . . . 4 ⊢ ({1o, 2o} Sat∈ (2o∈𝑔1o)) = ({1o, 2o} Sat∈ (2o∈𝑔1o)) | |
| 32 | 31 | sategoelfvb 35463 | . . 3 ⊢ (({1o, 2o} ∈ V ∧ (2o ∈ ω ∧ 1o ∈ ω)) → (𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o)))) |
| 33 | 9, 30, 32 | mp2an 692 | . 2 ⊢ (𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) ↔ (𝑆 ∈ ({1o, 2o} ↑m ω) ∧ (𝑆‘2o) ∈ (𝑆‘1o))) |
| 34 | 29, 33 | mpbir 231 | 1 ⊢ 𝑆 ∈ ({1o, 2o} Sat∈ (2o∈𝑔1o)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ifcif 4472 {cpr 4575 ↦ cmpt 5170 suc csuc 6308 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ωcom 7796 1oc1o 8378 2oc2o 8379 ↑m cmap 8750 ∈𝑔cgoe 35377 Sat∈ csate 35382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-ac2 10354 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-ac 10007 df-goel 35384 df-gona 35385 df-goal 35386 df-sat 35387 df-sate 35388 df-fmla 35389 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |