MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigsbergiedgw Structured version   Visualization version   GIF version

Theorem konigsbergiedgw 30228
Description: The indexed edges of the Königsberg graph 𝐺 is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.)
Hypotheses
Ref Expression
konigsberg.v 𝑉 = (0...3)
konigsberg.e 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
konigsberg.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
konigsbergiedgw 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝐸(𝑥)   𝐺(𝑥)

Proof of Theorem konigsbergiedgw
StepHypRef Expression
1 3nn0 12438 . . . . . . 7 3 ∈ ℕ0
2 0elfz 13563 . . . . . . 7 (3 ∈ ℕ0 → 0 ∈ (0...3))
31, 2ax-mp 5 . . . . . 6 0 ∈ (0...3)
4 1nn0 12436 . . . . . . 7 1 ∈ ℕ0
5 1le3 12371 . . . . . . 7 1 ≤ 3
6 elfz2nn0 13557 . . . . . . 7 (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3))
74, 1, 5, 6mpbir3an 1342 . . . . . 6 1 ∈ (0...3)
8 0ne1 12235 . . . . . 6 0 ≠ 1
93, 7, 8umgrbi 29082 . . . . 5 {0, 1} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
109a1i 11 . . . 4 (⊤ → {0, 1} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
11 2nn0 12437 . . . . . . 7 2 ∈ ℕ0
12 2re 12238 . . . . . . . 8 2 ∈ ℝ
13 3re 12244 . . . . . . . 8 3 ∈ ℝ
14 2lt3 12331 . . . . . . . 8 2 < 3
1512, 13, 14ltleii 11275 . . . . . . 7 2 ≤ 3
16 elfz2nn0 13557 . . . . . . 7 (2 ∈ (0...3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3))
1711, 1, 15, 16mpbir3an 1342 . . . . . 6 2 ∈ (0...3)
18 0ne2 12366 . . . . . 6 0 ≠ 2
193, 17, 18umgrbi 29082 . . . . 5 {0, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
2019a1i 11 . . . 4 (⊤ → {0, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
21 nn0fz0 13564 . . . . . . 7 (3 ∈ ℕ0 ↔ 3 ∈ (0...3))
221, 21mpbi 230 . . . . . 6 3 ∈ (0...3)
23 3ne0 12270 . . . . . . 7 3 ≠ 0
2423necomi 2979 . . . . . 6 0 ≠ 3
253, 22, 24umgrbi 29082 . . . . 5 {0, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
2625a1i 11 . . . 4 (⊤ → {0, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
27 1ne2 12367 . . . . . 6 1 ≠ 2
287, 17, 27umgrbi 29082 . . . . 5 {1, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
2928a1i 11 . . . 4 (⊤ → {1, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
3012, 14ltneii 11265 . . . . . 6 2 ≠ 3
3117, 22, 30umgrbi 29082 . . . . 5 {2, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
3231a1i 11 . . . 4 (⊤ → {2, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
3310, 20, 26, 29, 29, 32, 32s7cld 14819 . . 3 (⊤ → ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
3433mptru 1547 . 2 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
35 konigsberg.e . 2 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
36 konigsberg.v . . . . 5 𝑉 = (0...3)
3736pweqi 4575 . . . 4 𝒫 𝑉 = 𝒫 (0...3)
3837rabeqi 3416 . . 3 {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
3938wrdeqi 14480 . 2 Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
4034, 35, 393eltr4i 2841 1 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wtru 1541  wcel 2109  {crab 3402  𝒫 cpw 4559  {cpr 4587  cop 4591   class class class wbr 5102  cfv 6499  (class class class)co 7369  0cc0 11046  1c1 11047  cle 11187  2c2 12219  3c3 12220  0cn0 12420  ...cfz 13446  chash 14273  Word cword 14456  ⟨“cs7 14789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9832  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-3 12228  df-n0 12421  df-z 12508  df-uz 12772  df-fz 13447  df-fzo 13594  df-hash 14274  df-word 14457  df-concat 14514  df-s1 14539  df-s2 14791  df-s3 14792  df-s4 14793  df-s5 14794  df-s6 14795  df-s7 14796
This theorem is referenced by:  konigsbergssiedgwpr  30229  konigsbergumgr  30231
  Copyright terms: Public domain W3C validator