| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > konigsbergiedgw | Structured version Visualization version GIF version | ||
| Description: The indexed edges of the Königsberg graph 𝐺 is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.) |
| Ref | Expression |
|---|---|
| konigsberg.v | ⊢ 𝑉 = (0...3) |
| konigsberg.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 |
| konigsberg.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| Ref | Expression |
|---|---|
| konigsbergiedgw | ⊢ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn0 12524 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
| 2 | 0elfz 13646 | . . . . . . 7 ⊢ (3 ∈ ℕ0 → 0 ∈ (0...3)) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ 0 ∈ (0...3) |
| 4 | 1nn0 12522 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 5 | 1le3 12457 | . . . . . . 7 ⊢ 1 ≤ 3 | |
| 6 | elfz2nn0 13640 | . . . . . . 7 ⊢ (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3)) | |
| 7 | 4, 1, 5, 6 | mpbir3an 1342 | . . . . . 6 ⊢ 1 ∈ (0...3) |
| 8 | 0ne1 12316 | . . . . . 6 ⊢ 0 ≠ 1 | |
| 9 | 3, 7, 8 | umgrbi 29085 | . . . . 5 ⊢ {0, 1} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (⊤ → {0, 1} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 11 | 2nn0 12523 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 12 | 2re 12319 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 13 | 3re 12325 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
| 14 | 2lt3 12417 | . . . . . . . 8 ⊢ 2 < 3 | |
| 15 | 12, 13, 14 | ltleii 11363 | . . . . . . 7 ⊢ 2 ≤ 3 |
| 16 | elfz2nn0 13640 | . . . . . . 7 ⊢ (2 ∈ (0...3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3)) | |
| 17 | 11, 1, 15, 16 | mpbir3an 1342 | . . . . . 6 ⊢ 2 ∈ (0...3) |
| 18 | 0ne2 12452 | . . . . . 6 ⊢ 0 ≠ 2 | |
| 19 | 3, 17, 18 | umgrbi 29085 | . . . . 5 ⊢ {0, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (⊤ → {0, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 21 | nn0fz0 13647 | . . . . . . 7 ⊢ (3 ∈ ℕ0 ↔ 3 ∈ (0...3)) | |
| 22 | 1, 21 | mpbi 230 | . . . . . 6 ⊢ 3 ∈ (0...3) |
| 23 | 3ne0 12351 | . . . . . . 7 ⊢ 3 ≠ 0 | |
| 24 | 23 | necomi 2987 | . . . . . 6 ⊢ 0 ≠ 3 |
| 25 | 3, 22, 24 | umgrbi 29085 | . . . . 5 ⊢ {0, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 26 | 25 | a1i 11 | . . . 4 ⊢ (⊤ → {0, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 27 | 1ne2 12453 | . . . . . 6 ⊢ 1 ≠ 2 | |
| 28 | 7, 17, 27 | umgrbi 29085 | . . . . 5 ⊢ {1, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 29 | 28 | a1i 11 | . . . 4 ⊢ (⊤ → {1, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 30 | 12, 14 | ltneii 11353 | . . . . . 6 ⊢ 2 ≠ 3 |
| 31 | 17, 22, 30 | umgrbi 29085 | . . . . 5 ⊢ {2, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 32 | 31 | a1i 11 | . . . 4 ⊢ (⊤ → {2, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 33 | 10, 20, 26, 29, 29, 32, 32 | s7cld 14900 | . . 3 ⊢ (⊤ → 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 ∈ Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 34 | 33 | mptru 1547 | . 2 ⊢ 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 ∈ Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 35 | konigsberg.e | . 2 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 | |
| 36 | konigsberg.v | . . . . 5 ⊢ 𝑉 = (0...3) | |
| 37 | 36 | pweqi 4596 | . . . 4 ⊢ 𝒫 𝑉 = 𝒫 (0...3) |
| 38 | 37 | rabeqi 3434 | . . 3 ⊢ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 39 | 38 | wrdeqi 14560 | . 2 ⊢ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 40 | 34, 35, 39 | 3eltr4i 2848 | 1 ⊢ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 {crab 3420 𝒫 cpw 4580 {cpr 4608 〈cop 4612 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 0cc0 11134 1c1 11135 ≤ cle 11275 2c2 12300 3c3 12301 ℕ0cn0 12506 ...cfz 13529 ♯chash 14353 Word cword 14536 〈“cs7 14870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-hash 14354 df-word 14537 df-concat 14594 df-s1 14619 df-s2 14872 df-s3 14873 df-s4 14874 df-s5 14875 df-s6 14876 df-s7 14877 |
| This theorem is referenced by: konigsbergssiedgwpr 30235 konigsbergumgr 30237 |
| Copyright terms: Public domain | W3C validator |