Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > konigsbergiedgw | Structured version Visualization version GIF version |
Description: The indexed edges of the Königsberg graph 𝐺 is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.) |
Ref | Expression |
---|---|
konigsberg.v | ⊢ 𝑉 = (0...3) |
konigsberg.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 |
konigsberg.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
Ref | Expression |
---|---|
konigsbergiedgw | ⊢ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn0 12251 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
2 | 0elfz 13353 | . . . . . . 7 ⊢ (3 ∈ ℕ0 → 0 ∈ (0...3)) | |
3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ 0 ∈ (0...3) |
4 | 1nn0 12249 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
5 | 1le3 12185 | . . . . . . 7 ⊢ 1 ≤ 3 | |
6 | elfz2nn0 13347 | . . . . . . 7 ⊢ (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3)) | |
7 | 4, 1, 5, 6 | mpbir3an 1340 | . . . . . 6 ⊢ 1 ∈ (0...3) |
8 | 0ne1 12044 | . . . . . 6 ⊢ 0 ≠ 1 | |
9 | 3, 7, 8 | umgrbi 27471 | . . . . 5 ⊢ {0, 1} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
10 | 9 | a1i 11 | . . . 4 ⊢ (⊤ → {0, 1} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
11 | 2nn0 12250 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
12 | 2re 12047 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
13 | 3re 12053 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
14 | 2lt3 12145 | . . . . . . . 8 ⊢ 2 < 3 | |
15 | 12, 13, 14 | ltleii 11098 | . . . . . . 7 ⊢ 2 ≤ 3 |
16 | elfz2nn0 13347 | . . . . . . 7 ⊢ (2 ∈ (0...3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3)) | |
17 | 11, 1, 15, 16 | mpbir3an 1340 | . . . . . 6 ⊢ 2 ∈ (0...3) |
18 | 0ne2 12180 | . . . . . 6 ⊢ 0 ≠ 2 | |
19 | 3, 17, 18 | umgrbi 27471 | . . . . 5 ⊢ {0, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
20 | 19 | a1i 11 | . . . 4 ⊢ (⊤ → {0, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
21 | nn0fz0 13354 | . . . . . . 7 ⊢ (3 ∈ ℕ0 ↔ 3 ∈ (0...3)) | |
22 | 1, 21 | mpbi 229 | . . . . . 6 ⊢ 3 ∈ (0...3) |
23 | 3ne0 12079 | . . . . . . 7 ⊢ 3 ≠ 0 | |
24 | 23 | necomi 2998 | . . . . . 6 ⊢ 0 ≠ 3 |
25 | 3, 22, 24 | umgrbi 27471 | . . . . 5 ⊢ {0, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
26 | 25 | a1i 11 | . . . 4 ⊢ (⊤ → {0, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
27 | 1ne2 12181 | . . . . . 6 ⊢ 1 ≠ 2 | |
28 | 7, 17, 27 | umgrbi 27471 | . . . . 5 ⊢ {1, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
29 | 28 | a1i 11 | . . . 4 ⊢ (⊤ → {1, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
30 | 12, 14 | ltneii 11088 | . . . . . 6 ⊢ 2 ≠ 3 |
31 | 17, 22, 30 | umgrbi 27471 | . . . . 5 ⊢ {2, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
32 | 31 | a1i 11 | . . . 4 ⊢ (⊤ → {2, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
33 | 10, 20, 26, 29, 29, 32, 32 | s7cld 14589 | . . 3 ⊢ (⊤ → 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 ∈ Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
34 | 33 | mptru 1546 | . 2 ⊢ 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 ∈ Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
35 | konigsberg.e | . 2 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 | |
36 | konigsberg.v | . . . . 5 ⊢ 𝑉 = (0...3) | |
37 | 36 | pweqi 4551 | . . . 4 ⊢ 𝒫 𝑉 = 𝒫 (0...3) |
38 | 37 | rabeqi 3416 | . . 3 ⊢ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
39 | 38 | wrdeqi 14240 | . 2 ⊢ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
40 | 34, 35, 39 | 3eltr4i 2852 | 1 ⊢ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 {crab 3068 𝒫 cpw 4533 {cpr 4563 〈cop 4567 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 ≤ cle 11010 2c2 12028 3c3 12029 ℕ0cn0 12233 ...cfz 13239 ♯chash 14044 Word cword 14217 〈“cs7 14559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-concat 14274 df-s1 14301 df-s2 14561 df-s3 14562 df-s4 14563 df-s5 14564 df-s6 14565 df-s7 14566 |
This theorem is referenced by: konigsbergssiedgwpr 28613 konigsbergumgr 28615 |
Copyright terms: Public domain | W3C validator |