| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > konigsbergiedgw | Structured version Visualization version GIF version | ||
| Description: The indexed edges of the Königsberg graph 𝐺 is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.) |
| Ref | Expression |
|---|---|
| konigsberg.v | ⊢ 𝑉 = (0...3) |
| konigsberg.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 |
| konigsberg.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| Ref | Expression |
|---|---|
| konigsbergiedgw | ⊢ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn0 12391 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
| 2 | 0elfz 13516 | . . . . . . 7 ⊢ (3 ∈ ℕ0 → 0 ∈ (0...3)) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ 0 ∈ (0...3) |
| 4 | 1nn0 12389 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 5 | 1le3 12324 | . . . . . . 7 ⊢ 1 ≤ 3 | |
| 6 | elfz2nn0 13510 | . . . . . . 7 ⊢ (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3)) | |
| 7 | 4, 1, 5, 6 | mpbir3an 1342 | . . . . . 6 ⊢ 1 ∈ (0...3) |
| 8 | 0ne1 12188 | . . . . . 6 ⊢ 0 ≠ 1 | |
| 9 | 3, 7, 8 | umgrbi 29072 | . . . . 5 ⊢ {0, 1} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (⊤ → {0, 1} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 11 | 2nn0 12390 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 12 | 2re 12191 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 13 | 3re 12197 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
| 14 | 2lt3 12284 | . . . . . . . 8 ⊢ 2 < 3 | |
| 15 | 12, 13, 14 | ltleii 11228 | . . . . . . 7 ⊢ 2 ≤ 3 |
| 16 | elfz2nn0 13510 | . . . . . . 7 ⊢ (2 ∈ (0...3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3)) | |
| 17 | 11, 1, 15, 16 | mpbir3an 1342 | . . . . . 6 ⊢ 2 ∈ (0...3) |
| 18 | 0ne2 12319 | . . . . . 6 ⊢ 0 ≠ 2 | |
| 19 | 3, 17, 18 | umgrbi 29072 | . . . . 5 ⊢ {0, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (⊤ → {0, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 21 | nn0fz0 13517 | . . . . . . 7 ⊢ (3 ∈ ℕ0 ↔ 3 ∈ (0...3)) | |
| 22 | 1, 21 | mpbi 230 | . . . . . 6 ⊢ 3 ∈ (0...3) |
| 23 | 3ne0 12223 | . . . . . . 7 ⊢ 3 ≠ 0 | |
| 24 | 23 | necomi 2980 | . . . . . 6 ⊢ 0 ≠ 3 |
| 25 | 3, 22, 24 | umgrbi 29072 | . . . . 5 ⊢ {0, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 26 | 25 | a1i 11 | . . . 4 ⊢ (⊤ → {0, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 27 | 1ne2 12320 | . . . . . 6 ⊢ 1 ≠ 2 | |
| 28 | 7, 17, 27 | umgrbi 29072 | . . . . 5 ⊢ {1, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 29 | 28 | a1i 11 | . . . 4 ⊢ (⊤ → {1, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 30 | 12, 14 | ltneii 11218 | . . . . . 6 ⊢ 2 ≠ 3 |
| 31 | 17, 22, 30 | umgrbi 29072 | . . . . 5 ⊢ {2, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 32 | 31 | a1i 11 | . . . 4 ⊢ (⊤ → {2, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 33 | 10, 20, 26, 29, 29, 32, 32 | s7cld 14775 | . . 3 ⊢ (⊤ → 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 ∈ Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 34 | 33 | mptru 1548 | . 2 ⊢ 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 ∈ Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 35 | konigsberg.e | . 2 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 | |
| 36 | konigsberg.v | . . . . 5 ⊢ 𝑉 = (0...3) | |
| 37 | 36 | pweqi 4564 | . . . 4 ⊢ 𝒫 𝑉 = 𝒫 (0...3) |
| 38 | 37 | rabeqi 3406 | . . 3 ⊢ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 39 | 38 | wrdeqi 14436 | . 2 ⊢ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 40 | 34, 35, 39 | 3eltr4i 2842 | 1 ⊢ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊤wtru 1542 ∈ wcel 2110 {crab 3393 𝒫 cpw 4548 {cpr 4576 〈cop 4580 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 0cc0 10998 1c1 10999 ≤ cle 11139 2c2 12172 3c3 12173 ℕ0cn0 12373 ...cfz 13399 ♯chash 14229 Word cword 14412 〈“cs7 14745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-fzo 13547 df-hash 14230 df-word 14413 df-concat 14470 df-s1 14496 df-s2 14747 df-s3 14748 df-s4 14749 df-s5 14750 df-s6 14751 df-s7 14752 |
| This theorem is referenced by: konigsbergssiedgwpr 30219 konigsbergumgr 30221 |
| Copyright terms: Public domain | W3C validator |