MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigsbergiedgw Structured version   Visualization version   GIF version

Theorem konigsbergiedgw 27722
Description: The indexed edges of the Königsberg graph 𝐺 is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.)
Hypotheses
Ref Expression
konigsberg.v 𝑉 = (0...3)
konigsberg.e 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
konigsberg.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
konigsbergiedgw 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝐸(𝑥)   𝐺(𝑥)

Proof of Theorem konigsbergiedgw
StepHypRef Expression
1 3nn0 11768 . . . . . . 7 3 ∈ ℕ0
2 0elfz 12859 . . . . . . 7 (3 ∈ ℕ0 → 0 ∈ (0...3))
31, 2ax-mp 5 . . . . . 6 0 ∈ (0...3)
4 1nn0 11766 . . . . . . 7 1 ∈ ℕ0
5 1le3 11702 . . . . . . 7 1 ≤ 3
6 elfz2nn0 12853 . . . . . . 7 (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3))
74, 1, 5, 6mpbir3an 1334 . . . . . 6 1 ∈ (0...3)
8 0ne1 11561 . . . . . 6 0 ≠ 1
93, 7, 8umgrbi 26574 . . . . 5 {0, 1} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
109a1i 11 . . . 4 (⊤ → {0, 1} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
11 2nn0 11767 . . . . . . 7 2 ∈ ℕ0
12 2re 11564 . . . . . . . 8 2 ∈ ℝ
13 3re 11570 . . . . . . . 8 3 ∈ ℝ
14 2lt3 11662 . . . . . . . 8 2 < 3
1512, 13, 14ltleii 10615 . . . . . . 7 2 ≤ 3
16 elfz2nn0 12853 . . . . . . 7 (2 ∈ (0...3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3))
1711, 1, 15, 16mpbir3an 1334 . . . . . 6 2 ∈ (0...3)
18 0ne2 11697 . . . . . 6 0 ≠ 2
193, 17, 18umgrbi 26574 . . . . 5 {0, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
2019a1i 11 . . . 4 (⊤ → {0, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
21 nn0fz0 12860 . . . . . . 7 (3 ∈ ℕ0 ↔ 3 ∈ (0...3))
221, 21mpbi 231 . . . . . 6 3 ∈ (0...3)
23 3ne0 11596 . . . . . . 7 3 ≠ 0
2423necomi 3038 . . . . . 6 0 ≠ 3
253, 22, 24umgrbi 26574 . . . . 5 {0, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
2625a1i 11 . . . 4 (⊤ → {0, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
27 1ne2 11698 . . . . . 6 1 ≠ 2
287, 17, 27umgrbi 26574 . . . . 5 {1, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
2928a1i 11 . . . 4 (⊤ → {1, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
3012, 14ltneii 10605 . . . . . 6 2 ≠ 3
3117, 22, 30umgrbi 26574 . . . . 5 {2, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
3231a1i 11 . . . 4 (⊤ → {2, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
3310, 20, 26, 29, 29, 32, 32s7cld 14079 . . 3 (⊤ → ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
3433mptru 1529 . 2 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
35 konigsberg.e . 2 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
36 konigsberg.v . . . . 5 𝑉 = (0...3)
3736pweqi 4461 . . . 4 𝒫 𝑉 = 𝒫 (0...3)
3837rabeqi 3427 . . 3 {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
3938wrdeqi 13738 . 2 Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
4034, 35, 393eltr4i 2896 1 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1522  wtru 1523  wcel 2081  {crab 3109  𝒫 cpw 4457  {cpr 4478  cop 4482   class class class wbr 4966  cfv 6230  (class class class)co 7021  0cc0 10388  1c1 10389  cle 10527  2c2 11545  3c3 11546  0cn0 11750  ...cfz 12747  chash 13545  Word cword 13712  ⟨“cs7 14049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-1st 7550  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-1o 7958  df-oadd 7962  df-er 8144  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-dju 9181  df-card 9219  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-nn 11492  df-2 11553  df-3 11554  df-n0 11751  df-z 11835  df-uz 12099  df-fz 12748  df-fzo 12889  df-hash 13546  df-word 13713  df-concat 13774  df-s1 13799  df-s2 14051  df-s3 14052  df-s4 14053  df-s5 14054  df-s6 14055  df-s7 14056
This theorem is referenced by:  konigsbergssiedgwpr  27723  konigsbergumgr  27725
  Copyright terms: Public domain W3C validator