Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigsbergiedgw Structured version   Visualization version   GIF version

Theorem konigsbergiedgw 28037
 Description: The indexed edges of the Königsberg graph 𝐺 is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.)
Hypotheses
Ref Expression
konigsberg.v 𝑉 = (0...3)
konigsberg.e 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
konigsberg.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
konigsbergiedgw 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝐸(𝑥)   𝐺(𝑥)

Proof of Theorem konigsbergiedgw
StepHypRef Expression
1 3nn0 11907 . . . . . . 7 3 ∈ ℕ0
2 0elfz 13003 . . . . . . 7 (3 ∈ ℕ0 → 0 ∈ (0...3))
31, 2ax-mp 5 . . . . . 6 0 ∈ (0...3)
4 1nn0 11905 . . . . . . 7 1 ∈ ℕ0
5 1le3 11841 . . . . . . 7 1 ≤ 3
6 elfz2nn0 12997 . . . . . . 7 (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3))
74, 1, 5, 6mpbir3an 1338 . . . . . 6 1 ∈ (0...3)
8 0ne1 11700 . . . . . 6 0 ≠ 1
93, 7, 8umgrbi 26898 . . . . 5 {0, 1} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
109a1i 11 . . . 4 (⊤ → {0, 1} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
11 2nn0 11906 . . . . . . 7 2 ∈ ℕ0
12 2re 11703 . . . . . . . 8 2 ∈ ℝ
13 3re 11709 . . . . . . . 8 3 ∈ ℝ
14 2lt3 11801 . . . . . . . 8 2 < 3
1512, 13, 14ltleii 10756 . . . . . . 7 2 ≤ 3
16 elfz2nn0 12997 . . . . . . 7 (2 ∈ (0...3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3))
1711, 1, 15, 16mpbir3an 1338 . . . . . 6 2 ∈ (0...3)
18 0ne2 11836 . . . . . 6 0 ≠ 2
193, 17, 18umgrbi 26898 . . . . 5 {0, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
2019a1i 11 . . . 4 (⊤ → {0, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
21 nn0fz0 13004 . . . . . . 7 (3 ∈ ℕ0 ↔ 3 ∈ (0...3))
221, 21mpbi 233 . . . . . 6 3 ∈ (0...3)
23 3ne0 11735 . . . . . . 7 3 ≠ 0
2423necomi 3044 . . . . . 6 0 ≠ 3
253, 22, 24umgrbi 26898 . . . . 5 {0, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
2625a1i 11 . . . 4 (⊤ → {0, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
27 1ne2 11837 . . . . . 6 1 ≠ 2
287, 17, 27umgrbi 26898 . . . . 5 {1, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
2928a1i 11 . . . 4 (⊤ → {1, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
3012, 14ltneii 10746 . . . . . 6 2 ≠ 3
3117, 22, 30umgrbi 26898 . . . . 5 {2, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
3231a1i 11 . . . 4 (⊤ → {2, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
3310, 20, 26, 29, 29, 32, 32s7cld 14233 . . 3 (⊤ → ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
3433mptru 1545 . 2 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
35 konigsberg.e . 2 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
36 konigsberg.v . . . . 5 𝑉 = (0...3)
3736pweqi 4518 . . . 4 𝒫 𝑉 = 𝒫 (0...3)
3837rabeqi 3432 . . 3 {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
3938wrdeqi 13884 . 2 Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
4034, 35, 393eltr4i 2906 1 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538  ⊤wtru 1539   ∈ wcel 2112  {crab 3113  𝒫 cpw 4500  {cpr 4530  ⟨cop 4534   class class class wbr 5033  ‘cfv 6328  (class class class)co 7139  0cc0 10530  1c1 10531   ≤ cle 10669  2c2 11684  3c3 11685  ℕ0cn0 11889  ...cfz 12889  ♯chash 13690  Word cword 13861  ⟨“cs7 14203 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-fzo 13033  df-hash 13691  df-word 13862  df-concat 13918  df-s1 13945  df-s2 14205  df-s3 14206  df-s4 14207  df-s5 14208  df-s6 14209  df-s7 14210 This theorem is referenced by:  konigsbergssiedgwpr  28038  konigsbergumgr  28040
 Copyright terms: Public domain W3C validator