| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > konigsbergiedgw | Structured version Visualization version GIF version | ||
| Description: The indexed edges of the Königsberg graph 𝐺 is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.) |
| Ref | Expression |
|---|---|
| konigsberg.v | ⊢ 𝑉 = (0...3) |
| konigsberg.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 |
| konigsberg.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| Ref | Expression |
|---|---|
| konigsbergiedgw | ⊢ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn0 12405 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
| 2 | 0elfz 13530 | . . . . . . 7 ⊢ (3 ∈ ℕ0 → 0 ∈ (0...3)) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ 0 ∈ (0...3) |
| 4 | 1nn0 12403 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 5 | 1le3 12338 | . . . . . . 7 ⊢ 1 ≤ 3 | |
| 6 | elfz2nn0 13524 | . . . . . . 7 ⊢ (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3)) | |
| 7 | 4, 1, 5, 6 | mpbir3an 1342 | . . . . . 6 ⊢ 1 ∈ (0...3) |
| 8 | 0ne1 12202 | . . . . . 6 ⊢ 0 ≠ 1 | |
| 9 | 3, 7, 8 | umgrbi 29086 | . . . . 5 ⊢ {0, 1} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (⊤ → {0, 1} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 11 | 2nn0 12404 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 12 | 2re 12205 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 13 | 3re 12211 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
| 14 | 2lt3 12298 | . . . . . . . 8 ⊢ 2 < 3 | |
| 15 | 12, 13, 14 | ltleii 11242 | . . . . . . 7 ⊢ 2 ≤ 3 |
| 16 | elfz2nn0 13524 | . . . . . . 7 ⊢ (2 ∈ (0...3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3)) | |
| 17 | 11, 1, 15, 16 | mpbir3an 1342 | . . . . . 6 ⊢ 2 ∈ (0...3) |
| 18 | 0ne2 12333 | . . . . . 6 ⊢ 0 ≠ 2 | |
| 19 | 3, 17, 18 | umgrbi 29086 | . . . . 5 ⊢ {0, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (⊤ → {0, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 21 | nn0fz0 13531 | . . . . . . 7 ⊢ (3 ∈ ℕ0 ↔ 3 ∈ (0...3)) | |
| 22 | 1, 21 | mpbi 230 | . . . . . 6 ⊢ 3 ∈ (0...3) |
| 23 | 3ne0 12237 | . . . . . . 7 ⊢ 3 ≠ 0 | |
| 24 | 23 | necomi 2982 | . . . . . 6 ⊢ 0 ≠ 3 |
| 25 | 3, 22, 24 | umgrbi 29086 | . . . . 5 ⊢ {0, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 26 | 25 | a1i 11 | . . . 4 ⊢ (⊤ → {0, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 27 | 1ne2 12334 | . . . . . 6 ⊢ 1 ≠ 2 | |
| 28 | 7, 17, 27 | umgrbi 29086 | . . . . 5 ⊢ {1, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 29 | 28 | a1i 11 | . . . 4 ⊢ (⊤ → {1, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 30 | 12, 14 | ltneii 11232 | . . . . . 6 ⊢ 2 ≠ 3 |
| 31 | 17, 22, 30 | umgrbi 29086 | . . . . 5 ⊢ {2, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 32 | 31 | a1i 11 | . . . 4 ⊢ (⊤ → {2, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 33 | 10, 20, 26, 29, 29, 32, 32 | s7cld 14789 | . . 3 ⊢ (⊤ → 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 ∈ Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 34 | 33 | mptru 1548 | . 2 ⊢ 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 ∈ Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 35 | konigsberg.e | . 2 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 | |
| 36 | konigsberg.v | . . . . 5 ⊢ 𝑉 = (0...3) | |
| 37 | 36 | pweqi 4565 | . . . 4 ⊢ 𝒫 𝑉 = 𝒫 (0...3) |
| 38 | 37 | rabeqi 3408 | . . 3 ⊢ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 39 | 38 | wrdeqi 14450 | . 2 ⊢ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 40 | 34, 35, 39 | 3eltr4i 2844 | 1 ⊢ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 {crab 3395 𝒫 cpw 4549 {cpr 4577 〈cop 4581 class class class wbr 5093 ‘cfv 6487 (class class class)co 7352 0cc0 11012 1c1 11013 ≤ cle 11153 2c2 12186 3c3 12187 ℕ0cn0 12387 ...cfz 13413 ♯chash 14243 Word cword 14426 〈“cs7 14759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9800 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-n0 12388 df-z 12475 df-uz 12739 df-fz 13414 df-fzo 13561 df-hash 14244 df-word 14427 df-concat 14484 df-s1 14510 df-s2 14761 df-s3 14762 df-s4 14763 df-s5 14764 df-s6 14765 df-s7 14766 |
| This theorem is referenced by: konigsbergssiedgwpr 30236 konigsbergumgr 30238 |
| Copyright terms: Public domain | W3C validator |