| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > konigsbergiedgw | Structured version Visualization version GIF version | ||
| Description: The indexed edges of the Königsberg graph 𝐺 is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.) |
| Ref | Expression |
|---|---|
| konigsberg.v | ⊢ 𝑉 = (0...3) |
| konigsberg.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 |
| konigsberg.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| Ref | Expression |
|---|---|
| konigsbergiedgw | ⊢ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3nn0 12467 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
| 2 | 0elfz 13592 | . . . . . . 7 ⊢ (3 ∈ ℕ0 → 0 ∈ (0...3)) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ 0 ∈ (0...3) |
| 4 | 1nn0 12465 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 5 | 1le3 12400 | . . . . . . 7 ⊢ 1 ≤ 3 | |
| 6 | elfz2nn0 13586 | . . . . . . 7 ⊢ (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3)) | |
| 7 | 4, 1, 5, 6 | mpbir3an 1342 | . . . . . 6 ⊢ 1 ∈ (0...3) |
| 8 | 0ne1 12264 | . . . . . 6 ⊢ 0 ≠ 1 | |
| 9 | 3, 7, 8 | umgrbi 29035 | . . . . 5 ⊢ {0, 1} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (⊤ → {0, 1} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 11 | 2nn0 12466 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 12 | 2re 12267 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 13 | 3re 12273 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
| 14 | 2lt3 12360 | . . . . . . . 8 ⊢ 2 < 3 | |
| 15 | 12, 13, 14 | ltleii 11304 | . . . . . . 7 ⊢ 2 ≤ 3 |
| 16 | elfz2nn0 13586 | . . . . . . 7 ⊢ (2 ∈ (0...3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3)) | |
| 17 | 11, 1, 15, 16 | mpbir3an 1342 | . . . . . 6 ⊢ 2 ∈ (0...3) |
| 18 | 0ne2 12395 | . . . . . 6 ⊢ 0 ≠ 2 | |
| 19 | 3, 17, 18 | umgrbi 29035 | . . . . 5 ⊢ {0, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 20 | 19 | a1i 11 | . . . 4 ⊢ (⊤ → {0, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 21 | nn0fz0 13593 | . . . . . . 7 ⊢ (3 ∈ ℕ0 ↔ 3 ∈ (0...3)) | |
| 22 | 1, 21 | mpbi 230 | . . . . . 6 ⊢ 3 ∈ (0...3) |
| 23 | 3ne0 12299 | . . . . . . 7 ⊢ 3 ≠ 0 | |
| 24 | 23 | necomi 2980 | . . . . . 6 ⊢ 0 ≠ 3 |
| 25 | 3, 22, 24 | umgrbi 29035 | . . . . 5 ⊢ {0, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 26 | 25 | a1i 11 | . . . 4 ⊢ (⊤ → {0, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 27 | 1ne2 12396 | . . . . . 6 ⊢ 1 ≠ 2 | |
| 28 | 7, 17, 27 | umgrbi 29035 | . . . . 5 ⊢ {1, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 29 | 28 | a1i 11 | . . . 4 ⊢ (⊤ → {1, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 30 | 12, 14 | ltneii 11294 | . . . . . 6 ⊢ 2 ≠ 3 |
| 31 | 17, 22, 30 | umgrbi 29035 | . . . . 5 ⊢ {2, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 32 | 31 | a1i 11 | . . . 4 ⊢ (⊤ → {2, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 33 | 10, 20, 26, 29, 29, 32, 32 | s7cld 14849 | . . 3 ⊢ (⊤ → 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 ∈ Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}) |
| 34 | 33 | mptru 1547 | . 2 ⊢ 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 ∈ Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 35 | konigsberg.e | . 2 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”〉 | |
| 36 | konigsberg.v | . . . . 5 ⊢ 𝑉 = (0...3) | |
| 37 | 36 | pweqi 4582 | . . . 4 ⊢ 𝒫 𝑉 = 𝒫 (0...3) |
| 38 | 37 | rabeqi 3422 | . . 3 ⊢ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 39 | 38 | wrdeqi 14509 | . 2 ⊢ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2} |
| 40 | 34, 35, 39 | 3eltr4i 2842 | 1 ⊢ 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 {crab 3408 𝒫 cpw 4566 {cpr 4594 〈cop 4598 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 0cc0 11075 1c1 11076 ≤ cle 11216 2c2 12248 3c3 12249 ℕ0cn0 12449 ...cfz 13475 ♯chash 14302 Word cword 14485 〈“cs7 14819 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-concat 14543 df-s1 14568 df-s2 14821 df-s3 14822 df-s4 14823 df-s5 14824 df-s6 14825 df-s7 14826 |
| This theorem is referenced by: konigsbergssiedgwpr 30185 konigsbergumgr 30187 |
| Copyright terms: Public domain | W3C validator |