![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > konigsbergiedgw | Structured version Visualization version GIF version |
Description: The indexed edges of the KΓΆnigsberg graph πΊ is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.) |
Ref | Expression |
---|---|
konigsberg.v | β’ π = (0...3) |
konigsberg.e | β’ πΈ = β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ© |
konigsberg.g | β’ πΊ = β¨π, πΈβ© |
Ref | Expression |
---|---|
konigsbergiedgw | β’ πΈ β Word {π₯ β π« π β£ (β―βπ₯) = 2} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn0 12487 | . . . . . . 7 β’ 3 β β0 | |
2 | 0elfz 13595 | . . . . . . 7 β’ (3 β β0 β 0 β (0...3)) | |
3 | 1, 2 | ax-mp 5 | . . . . . 6 β’ 0 β (0...3) |
4 | 1nn0 12485 | . . . . . . 7 β’ 1 β β0 | |
5 | 1le3 12421 | . . . . . . 7 β’ 1 β€ 3 | |
6 | elfz2nn0 13589 | . . . . . . 7 β’ (1 β (0...3) β (1 β β0 β§ 3 β β0 β§ 1 β€ 3)) | |
7 | 4, 1, 5, 6 | mpbir3an 1338 | . . . . . 6 β’ 1 β (0...3) |
8 | 0ne1 12280 | . . . . . 6 β’ 0 β 1 | |
9 | 3, 7, 8 | umgrbi 28830 | . . . . 5 β’ {0, 1} β {π₯ β π« (0...3) β£ (β―βπ₯) = 2} |
10 | 9 | a1i 11 | . . . 4 β’ (β€ β {0, 1} β {π₯ β π« (0...3) β£ (β―βπ₯) = 2}) |
11 | 2nn0 12486 | . . . . . . 7 β’ 2 β β0 | |
12 | 2re 12283 | . . . . . . . 8 β’ 2 β β | |
13 | 3re 12289 | . . . . . . . 8 β’ 3 β β | |
14 | 2lt3 12381 | . . . . . . . 8 β’ 2 < 3 | |
15 | 12, 13, 14 | ltleii 11334 | . . . . . . 7 β’ 2 β€ 3 |
16 | elfz2nn0 13589 | . . . . . . 7 β’ (2 β (0...3) β (2 β β0 β§ 3 β β0 β§ 2 β€ 3)) | |
17 | 11, 1, 15, 16 | mpbir3an 1338 | . . . . . 6 β’ 2 β (0...3) |
18 | 0ne2 12416 | . . . . . 6 β’ 0 β 2 | |
19 | 3, 17, 18 | umgrbi 28830 | . . . . 5 β’ {0, 2} β {π₯ β π« (0...3) β£ (β―βπ₯) = 2} |
20 | 19 | a1i 11 | . . . 4 β’ (β€ β {0, 2} β {π₯ β π« (0...3) β£ (β―βπ₯) = 2}) |
21 | nn0fz0 13596 | . . . . . . 7 β’ (3 β β0 β 3 β (0...3)) | |
22 | 1, 21 | mpbi 229 | . . . . . 6 β’ 3 β (0...3) |
23 | 3ne0 12315 | . . . . . . 7 β’ 3 β 0 | |
24 | 23 | necomi 2987 | . . . . . 6 β’ 0 β 3 |
25 | 3, 22, 24 | umgrbi 28830 | . . . . 5 β’ {0, 3} β {π₯ β π« (0...3) β£ (β―βπ₯) = 2} |
26 | 25 | a1i 11 | . . . 4 β’ (β€ β {0, 3} β {π₯ β π« (0...3) β£ (β―βπ₯) = 2}) |
27 | 1ne2 12417 | . . . . . 6 β’ 1 β 2 | |
28 | 7, 17, 27 | umgrbi 28830 | . . . . 5 β’ {1, 2} β {π₯ β π« (0...3) β£ (β―βπ₯) = 2} |
29 | 28 | a1i 11 | . . . 4 β’ (β€ β {1, 2} β {π₯ β π« (0...3) β£ (β―βπ₯) = 2}) |
30 | 12, 14 | ltneii 11324 | . . . . . 6 β’ 2 β 3 |
31 | 17, 22, 30 | umgrbi 28830 | . . . . 5 β’ {2, 3} β {π₯ β π« (0...3) β£ (β―βπ₯) = 2} |
32 | 31 | a1i 11 | . . . 4 β’ (β€ β {2, 3} β {π₯ β π« (0...3) β£ (β―βπ₯) = 2}) |
33 | 10, 20, 26, 29, 29, 32, 32 | s7cld 14824 | . . 3 β’ (β€ β β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ© β Word {π₯ β π« (0...3) β£ (β―βπ₯) = 2}) |
34 | 33 | mptru 1540 | . 2 β’ β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ© β Word {π₯ β π« (0...3) β£ (β―βπ₯) = 2} |
35 | konigsberg.e | . 2 β’ πΈ = β¨β{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}ββ© | |
36 | konigsberg.v | . . . . 5 β’ π = (0...3) | |
37 | 36 | pweqi 4610 | . . . 4 β’ π« π = π« (0...3) |
38 | 37 | rabeqi 3437 | . . 3 β’ {π₯ β π« π β£ (β―βπ₯) = 2} = {π₯ β π« (0...3) β£ (β―βπ₯) = 2} |
39 | 38 | wrdeqi 14484 | . 2 β’ Word {π₯ β π« π β£ (β―βπ₯) = 2} = Word {π₯ β π« (0...3) β£ (β―βπ₯) = 2} |
40 | 34, 35, 39 | 3eltr4i 2838 | 1 β’ πΈ β Word {π₯ β π« π β£ (β―βπ₯) = 2} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 β€wtru 1534 β wcel 2098 {crab 3424 π« cpw 4594 {cpr 4622 β¨cop 4626 class class class wbr 5138 βcfv 6533 (class class class)co 7401 0cc0 11106 1c1 11107 β€ cle 11246 2c2 12264 3c3 12265 β0cn0 12469 ...cfz 13481 β―chash 14287 Word cword 14461 β¨βcs7 14794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-oadd 8465 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-fz 13482 df-fzo 13625 df-hash 14288 df-word 14462 df-concat 14518 df-s1 14543 df-s2 14796 df-s3 14797 df-s4 14798 df-s5 14799 df-s6 14800 df-s7 14801 |
This theorem is referenced by: konigsbergssiedgwpr 29971 konigsbergumgr 29973 |
Copyright terms: Public domain | W3C validator |