MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigsbergiedgw Structured version   Visualization version   GIF version

Theorem konigsbergiedgw 30218
Description: The indexed edges of the Königsberg graph 𝐺 is a word over the pairs of vertices. (Contributed by AV, 28-Feb-2021.)
Hypotheses
Ref Expression
konigsberg.v 𝑉 = (0...3)
konigsberg.e 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
konigsberg.g 𝐺 = ⟨𝑉, 𝐸
Assertion
Ref Expression
konigsbergiedgw 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝐸(𝑥)   𝐺(𝑥)

Proof of Theorem konigsbergiedgw
StepHypRef Expression
1 3nn0 12391 . . . . . . 7 3 ∈ ℕ0
2 0elfz 13516 . . . . . . 7 (3 ∈ ℕ0 → 0 ∈ (0...3))
31, 2ax-mp 5 . . . . . 6 0 ∈ (0...3)
4 1nn0 12389 . . . . . . 7 1 ∈ ℕ0
5 1le3 12324 . . . . . . 7 1 ≤ 3
6 elfz2nn0 13510 . . . . . . 7 (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3))
74, 1, 5, 6mpbir3an 1342 . . . . . 6 1 ∈ (0...3)
8 0ne1 12188 . . . . . 6 0 ≠ 1
93, 7, 8umgrbi 29072 . . . . 5 {0, 1} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
109a1i 11 . . . 4 (⊤ → {0, 1} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
11 2nn0 12390 . . . . . . 7 2 ∈ ℕ0
12 2re 12191 . . . . . . . 8 2 ∈ ℝ
13 3re 12197 . . . . . . . 8 3 ∈ ℝ
14 2lt3 12284 . . . . . . . 8 2 < 3
1512, 13, 14ltleii 11228 . . . . . . 7 2 ≤ 3
16 elfz2nn0 13510 . . . . . . 7 (2 ∈ (0...3) ↔ (2 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 2 ≤ 3))
1711, 1, 15, 16mpbir3an 1342 . . . . . 6 2 ∈ (0...3)
18 0ne2 12319 . . . . . 6 0 ≠ 2
193, 17, 18umgrbi 29072 . . . . 5 {0, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
2019a1i 11 . . . 4 (⊤ → {0, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
21 nn0fz0 13517 . . . . . . 7 (3 ∈ ℕ0 ↔ 3 ∈ (0...3))
221, 21mpbi 230 . . . . . 6 3 ∈ (0...3)
23 3ne0 12223 . . . . . . 7 3 ≠ 0
2423necomi 2980 . . . . . 6 0 ≠ 3
253, 22, 24umgrbi 29072 . . . . 5 {0, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
2625a1i 11 . . . 4 (⊤ → {0, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
27 1ne2 12320 . . . . . 6 1 ≠ 2
287, 17, 27umgrbi 29072 . . . . 5 {1, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
2928a1i 11 . . . 4 (⊤ → {1, 2} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
3012, 14ltneii 11218 . . . . . 6 2 ≠ 3
3117, 22, 30umgrbi 29072 . . . . 5 {2, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
3231a1i 11 . . . 4 (⊤ → {2, 3} ∈ {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
3310, 20, 26, 29, 29, 32, 32s7cld 14775 . . 3 (⊤ → ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2})
3433mptru 1548 . 2 ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩ ∈ Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
35 konigsberg.e . 2 𝐸 = ⟨“{0, 1} {0, 2} {0, 3} {1, 2} {1, 2} {2, 3} {2, 3}”⟩
36 konigsberg.v . . . . 5 𝑉 = (0...3)
3736pweqi 4564 . . . 4 𝒫 𝑉 = 𝒫 (0...3)
3837rabeqi 3406 . . 3 {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
3938wrdeqi 14436 . 2 Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = Word {𝑥 ∈ 𝒫 (0...3) ∣ (♯‘𝑥) = 2}
4034, 35, 393eltr4i 2842 1 𝐸 ∈ Word {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wtru 1542  wcel 2110  {crab 3393  𝒫 cpw 4548  {cpr 4576  cop 4580   class class class wbr 5089  cfv 6477  (class class class)co 7341  0cc0 10998  1c1 10999  cle 11139  2c2 12172  3c3 12173  0cn0 12373  ...cfz 13399  chash 14229  Word cword 14412  ⟨“cs7 14745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-hash 14230  df-word 14413  df-concat 14470  df-s1 14496  df-s2 14747  df-s3 14748  df-s4 14749  df-s5 14750  df-s6 14751  df-s7 14752
This theorem is referenced by:  konigsbergssiedgwpr  30219  konigsbergumgr  30221
  Copyright terms: Public domain W3C validator