MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1ibas Structured version   Visualization version   GIF version

Theorem smndex1ibas 18860
Description: The modulo function 𝐼 is an endofunction on 0. (Contributed by AV, 12-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
Assertion
Ref Expression
smndex1ibas 𝐼 ∈ (Base‘𝑀)

Proof of Theorem smndex1ibas
StepHypRef Expression
1 eqid 2725 . . . 4 (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
2 nn0z 12616 . . . . 5 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
3 smndex1ibas.n . . . . . 6 𝑁 ∈ ℕ
43a1i 11 . . . . 5 (𝑥 ∈ ℕ0𝑁 ∈ ℕ)
52, 4zmodcld 13893 . . . 4 (𝑥 ∈ ℕ0 → (𝑥 mod 𝑁) ∈ ℕ0)
61, 5fmpti 7121 . . 3 (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)):ℕ0⟶ℕ0
7 nn0ex 12511 . . . 4 0 ∈ V
87, 7elmap 8890 . . 3 ((𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) ∈ (ℕ0m0) ↔ (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)):ℕ0⟶ℕ0)
96, 8mpbir 230 . 2 (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) ∈ (ℕ0m0)
10 smndex1ibas.i . 2 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
11 smndex1ibas.m . . 3 𝑀 = (EndoFMnd‘ℕ0)
12 eqid 2725 . . 3 (Base‘𝑀) = (Base‘𝑀)
1311, 12efmndbas 18831 . 2 (Base‘𝑀) = (ℕ0m0)
149, 10, 133eltr4i 2838 1 𝐼 ∈ (Base‘𝑀)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  cmpt 5232  wf 6545  cfv 6549  (class class class)co 7419  m cmap 8845  cn 12245  0cn0 12505   mod cmo 13870  Basecbs 17183  EndoFMndcefmnd 18828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-uz 12856  df-rp 13010  df-fz 13520  df-fl 13793  df-mod 13871  df-struct 17119  df-slot 17154  df-ndx 17166  df-base 17184  df-plusg 17249  df-tset 17255  df-efmnd 18829
This theorem is referenced by:  smndex1basss  18865  smndex1mgm  18867  smndex1mndlem  18869  smndex1id  18871
  Copyright terms: Public domain W3C validator