MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1ibas Structured version   Visualization version   GIF version

Theorem smndex1ibas 18803
Description: The modulo function 𝐼 is an endofunction on 0. (Contributed by AV, 12-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
Assertion
Ref Expression
smndex1ibas 𝐼 ∈ (Base‘𝑀)

Proof of Theorem smndex1ibas
StepHypRef Expression
1 eqid 2731 . . . 4 (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
2 nn0z 12488 . . . . 5 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
3 smndex1ibas.n . . . . . 6 𝑁 ∈ ℕ
43a1i 11 . . . . 5 (𝑥 ∈ ℕ0𝑁 ∈ ℕ)
52, 4zmodcld 13791 . . . 4 (𝑥 ∈ ℕ0 → (𝑥 mod 𝑁) ∈ ℕ0)
61, 5fmpti 7040 . . 3 (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)):ℕ0⟶ℕ0
7 nn0ex 12382 . . . 4 0 ∈ V
87, 7elmap 8790 . . 3 ((𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) ∈ (ℕ0m0) ↔ (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)):ℕ0⟶ℕ0)
96, 8mpbir 231 . 2 (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) ∈ (ℕ0m0)
10 smndex1ibas.i . 2 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
11 smndex1ibas.m . . 3 𝑀 = (EndoFMnd‘ℕ0)
12 eqid 2731 . . 3 (Base‘𝑀) = (Base‘𝑀)
1311, 12efmndbas 18774 . 2 (Base‘𝑀) = (ℕ0m0)
149, 10, 133eltr4i 2844 1 𝐼 ∈ (Base‘𝑀)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  cmpt 5167  wf 6472  cfv 6476  (class class class)co 7341  m cmap 8745  cn 12120  0cn0 12376   mod cmo 13768  Basecbs 17115  EndoFMndcefmnd 18771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-fz 13403  df-fl 13691  df-mod 13769  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-plusg 17169  df-tset 17175  df-efmnd 18772
This theorem is referenced by:  smndex1basss  18808  smndex1mgm  18810  smndex1mndlem  18812  smndex1id  18814
  Copyright terms: Public domain W3C validator