| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1sr | Structured version Visualization version GIF version | ||
| Description: The constant 1R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 1sr | ⊢ 1R ∈ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr 11029 | . . . . 5 ⊢ 1P ∈ P | |
| 2 | addclpr 11032 | . . . . 5 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
| 3 | 1, 1, 2 | mp2an 692 | . . . 4 ⊢ (1P +P 1P) ∈ P |
| 4 | opelxpi 5691 | . . . 4 ⊢ (((1P +P 1P) ∈ P ∧ 1P ∈ P) → 〈(1P +P 1P), 1P〉 ∈ (P × P)) | |
| 5 | 3, 1, 4 | mp2an 692 | . . 3 ⊢ 〈(1P +P 1P), 1P〉 ∈ (P × P) |
| 6 | enrex 11081 | . . . 4 ⊢ ~R ∈ V | |
| 7 | 6 | ecelqsi 8787 | . . 3 ⊢ (〈(1P +P 1P), 1P〉 ∈ (P × P) → [〈(1P +P 1P), 1P〉] ~R ∈ ((P × P) / ~R )) |
| 8 | 5, 7 | ax-mp 5 | . 2 ⊢ [〈(1P +P 1P), 1P〉] ~R ∈ ((P × P) / ~R ) |
| 9 | df-1r 11075 | . 2 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
| 10 | df-nr 11070 | . 2 ⊢ R = ((P × P) / ~R ) | |
| 11 | 8, 9, 10 | 3eltr4i 2847 | 1 ⊢ 1R ∈ R |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 〈cop 4607 × cxp 5652 (class class class)co 7405 [cec 8717 / cqs 8718 Pcnp 10873 1Pc1p 10874 +P cpp 10875 ~R cer 10878 Rcnr 10879 1Rc1r 10881 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-omul 8485 df-er 8719 df-ec 8721 df-qs 8725 df-ni 10886 df-pli 10887 df-mi 10888 df-lti 10889 df-plpq 10922 df-mpq 10923 df-ltpq 10924 df-enq 10925 df-nq 10926 df-erq 10927 df-plq 10928 df-mq 10929 df-1nq 10930 df-rq 10931 df-ltnq 10932 df-np 10995 df-1p 10996 df-plp 10997 df-enr 11069 df-nr 11070 df-1r 11075 |
| This theorem is referenced by: 1ne0sr 11110 supsr 11126 ax1cn 11163 axicn 11164 axi2m1 11173 ax1ne0 11174 ax1rid 11175 axcnre 11178 |
| Copyright terms: Public domain | W3C validator |