![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1sr | Structured version Visualization version GIF version |
Description: The constant 1R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1sr | ⊢ 1R ∈ R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pr 11016 | . . . . 5 ⊢ 1P ∈ P | |
2 | addclpr 11019 | . . . . 5 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
3 | 1, 1, 2 | mp2an 689 | . . . 4 ⊢ (1P +P 1P) ∈ P |
4 | opelxpi 5713 | . . . 4 ⊢ (((1P +P 1P) ∈ P ∧ 1P ∈ P) → 〈(1P +P 1P), 1P〉 ∈ (P × P)) | |
5 | 3, 1, 4 | mp2an 689 | . . 3 ⊢ 〈(1P +P 1P), 1P〉 ∈ (P × P) |
6 | enrex 11068 | . . . 4 ⊢ ~R ∈ V | |
7 | 6 | ecelqsi 8773 | . . 3 ⊢ (〈(1P +P 1P), 1P〉 ∈ (P × P) → [〈(1P +P 1P), 1P〉] ~R ∈ ((P × P) / ~R )) |
8 | 5, 7 | ax-mp 5 | . 2 ⊢ [〈(1P +P 1P), 1P〉] ~R ∈ ((P × P) / ~R ) |
9 | df-1r 11062 | . 2 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
10 | df-nr 11057 | . 2 ⊢ R = ((P × P) / ~R ) | |
11 | 8, 9, 10 | 3eltr4i 2845 | 1 ⊢ 1R ∈ R |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 〈cop 4634 × cxp 5674 (class class class)co 7412 [cec 8707 / cqs 8708 Pcnp 10860 1Pc1p 10861 +P cpp 10862 ~R cer 10865 Rcnr 10866 1Rc1r 10868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-oadd 8476 df-omul 8477 df-er 8709 df-ec 8711 df-qs 8715 df-ni 10873 df-pli 10874 df-mi 10875 df-lti 10876 df-plpq 10909 df-mpq 10910 df-ltpq 10911 df-enq 10912 df-nq 10913 df-erq 10914 df-plq 10915 df-mq 10916 df-1nq 10917 df-rq 10918 df-ltnq 10919 df-np 10982 df-1p 10983 df-plp 10984 df-enr 11056 df-nr 11057 df-1r 11062 |
This theorem is referenced by: 1ne0sr 11097 supsr 11113 ax1cn 11150 axicn 11151 axi2m1 11160 ax1ne0 11161 ax1rid 11162 axcnre 11165 |
Copyright terms: Public domain | W3C validator |