| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1sr | Structured version Visualization version GIF version | ||
| Description: The constant 1R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 1sr | ⊢ 1R ∈ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr 11037 | . . . . 5 ⊢ 1P ∈ P | |
| 2 | addclpr 11040 | . . . . 5 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
| 3 | 1, 1, 2 | mp2an 692 | . . . 4 ⊢ (1P +P 1P) ∈ P |
| 4 | opelxpi 5702 | . . . 4 ⊢ (((1P +P 1P) ∈ P ∧ 1P ∈ P) → 〈(1P +P 1P), 1P〉 ∈ (P × P)) | |
| 5 | 3, 1, 4 | mp2an 692 | . . 3 ⊢ 〈(1P +P 1P), 1P〉 ∈ (P × P) |
| 6 | enrex 11089 | . . . 4 ⊢ ~R ∈ V | |
| 7 | 6 | ecelqsi 8795 | . . 3 ⊢ (〈(1P +P 1P), 1P〉 ∈ (P × P) → [〈(1P +P 1P), 1P〉] ~R ∈ ((P × P) / ~R )) |
| 8 | 5, 7 | ax-mp 5 | . 2 ⊢ [〈(1P +P 1P), 1P〉] ~R ∈ ((P × P) / ~R ) |
| 9 | df-1r 11083 | . 2 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
| 10 | df-nr 11078 | . 2 ⊢ R = ((P × P) / ~R ) | |
| 11 | 8, 9, 10 | 3eltr4i 2846 | 1 ⊢ 1R ∈ R |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 〈cop 4612 × cxp 5663 (class class class)co 7413 [cec 8725 / cqs 8726 Pcnp 10881 1Pc1p 10882 +P cpp 10883 ~R cer 10886 Rcnr 10887 1Rc1r 10889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-oadd 8492 df-omul 8493 df-er 8727 df-ec 8729 df-qs 8733 df-ni 10894 df-pli 10895 df-mi 10896 df-lti 10897 df-plpq 10930 df-mpq 10931 df-ltpq 10932 df-enq 10933 df-nq 10934 df-erq 10935 df-plq 10936 df-mq 10937 df-1nq 10938 df-rq 10939 df-ltnq 10940 df-np 11003 df-1p 11004 df-plp 11005 df-enr 11077 df-nr 11078 df-1r 11083 |
| This theorem is referenced by: 1ne0sr 11118 supsr 11134 ax1cn 11171 axicn 11172 axi2m1 11181 ax1ne0 11182 ax1rid 11183 axcnre 11186 |
| Copyright terms: Public domain | W3C validator |