MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlk2v2elem1 Structured version   Visualization version   GIF version

Theorem wlk2v2elem1 30175
Description: Lemma 1 for wlk2v2e 30177: 𝐹 is a length 2 word of over {0}, the domain of the singleton word 𝐼. (Contributed by Alexander van der Vekens, 22-Oct-2017.) (Revised by AV, 9-Jan-2021.)
Hypotheses
Ref Expression
wlk2v2e.i 𝐼 = ⟨“{𝑋, 𝑌}”⟩
wlk2v2e.f 𝐹 = ⟨“00”⟩
Assertion
Ref Expression
wlk2v2elem1 𝐹 ∈ Word dom 𝐼

Proof of Theorem wlk2v2elem1
StepHypRef Expression
1 c0ex 11256 . . . 4 0 ∈ V
21snid 4661 . . 3 0 ∈ {0}
3 id 22 . . . 4 (0 ∈ {0} → 0 ∈ {0})
43, 3s2cld 14911 . . 3 (0 ∈ {0} → ⟨“00”⟩ ∈ Word {0})
52, 4ax-mp 5 . 2 ⟨“00”⟩ ∈ Word {0}
6 wlk2v2e.f . 2 𝐹 = ⟨“00”⟩
7 wlk2v2e.i . . . . 5 𝐼 = ⟨“{𝑋, 𝑌}”⟩
87dmeqi 5914 . . . 4 dom 𝐼 = dom ⟨“{𝑋, 𝑌}”⟩
9 s1dm 14647 . . . 4 dom ⟨“{𝑋, 𝑌}”⟩ = {0}
108, 9eqtri 2764 . . 3 dom 𝐼 = {0}
1110wrdeqi 14576 . 2 Word dom 𝐼 = Word {0}
125, 6, 113eltr4i 2853 1 𝐹 ∈ Word dom 𝐼
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  {csn 4625  {cpr 4627  dom cdm 5684  0cc0 11156  Word cword 14553  ⟨“cs1 14634  ⟨“cs2 14881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-hash 14371  df-word 14554  df-concat 14610  df-s1 14635  df-s2 14888
This theorem is referenced by:  wlk2v2e  30177
  Copyright terms: Public domain W3C validator