| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eltr3d | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3eltr3d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 3eltr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3eltr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eltr3d | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr3d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3eltr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | 3eltr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | eleqtrd 2833 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| 5 | 1, 4 | eqeltrrd 2832 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: axcc2lem 10327 axcclem 10348 icoshftf1o 13374 lincmb01cmp 13395 fzosubel 13624 symgsubmefmndALT 19316 psgnunilem1 19406 efgcpbllemb 19668 lspprabs 21030 cnmpt2res 23593 xpstopnlem1 23725 tususp 24187 tustps 24188 ressxms 24441 ressms 24442 tmsxpsval 24454 limcco 25822 dvcnp2 25849 dvcnp2OLD 25850 dvmulbr 25869 dvcobr 25877 dvcnvlem 25908 taylthlem2 26310 taylthlem2OLD 26311 jensen 26927 f1otrg 28850 nsgqusf1olem1 33376 txomap 33845 probmeasb 34441 fsum2dsub 34618 cvmlift2lem9 35353 prdsbnd2 37841 iocopn 45566 icoopn 45571 reclimc 45697 cncfiooicclem1 45937 itgiccshift 46024 dirkercncflem4 46150 fourierdlem32 46183 fourierdlem33 46184 fourierdlem60 46210 fourierdlem61 46211 fourierdlem76 46226 fourierdlem81 46231 fourierdlem90 46240 fourierdlem111 46261 uptrlem3 49250 fuco2eld3 49353 fucoid2 49387 |
| Copyright terms: Public domain | W3C validator |