| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eltr3d | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3eltr3d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 3eltr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3eltr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eltr3d | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr3d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3eltr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | 3eltr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | eleqtrd 2831 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| 5 | 1, 4 | eqeltrrd 2830 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: axcc2lem 10396 axcclem 10417 icoshftf1o 13442 lincmb01cmp 13463 fzosubel 13692 symgsubmefmndALT 19340 psgnunilem1 19430 efgcpbllemb 19692 lspprabs 21009 cnmpt2res 23571 xpstopnlem1 23703 tususp 24166 tustps 24167 ressxms 24420 ressms 24421 tmsxpsval 24433 limcco 25801 dvcnp2 25828 dvcnp2OLD 25829 dvmulbr 25848 dvcobr 25856 dvcnvlem 25887 taylthlem2 26289 taylthlem2OLD 26290 jensen 26906 f1otrg 28805 nsgqusf1olem1 33391 txomap 33831 probmeasb 34428 fsum2dsub 34605 cvmlift2lem9 35305 prdsbnd2 37796 iocopn 45525 icoopn 45530 reclimc 45658 cncfiooicclem1 45898 itgiccshift 45985 dirkercncflem4 46111 fourierdlem32 46144 fourierdlem33 46145 fourierdlem60 46171 fourierdlem61 46172 fourierdlem76 46187 fourierdlem81 46192 fourierdlem90 46201 fourierdlem111 46222 uptrlem3 49205 fuco2eld3 49308 fucoid2 49342 |
| Copyright terms: Public domain | W3C validator |