![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eltr3d | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr3d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
3eltr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3eltr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3eltr3d | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr3d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 3eltr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
3 | 3eltr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | eleqtrd 2841 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
5 | 1, 4 | eqeltrrd 2840 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-clel 2814 |
This theorem is referenced by: axcc2lem 10474 axcclem 10495 icoshftf1o 13511 lincmb01cmp 13532 fzosubel 13760 symgsubmefmndALT 19436 psgnunilem1 19526 efgcpbllemb 19788 lspprabs 21112 cnmpt2res 23701 xpstopnlem1 23833 tususp 24297 tustps 24298 ressxms 24554 ressms 24555 tmsxpsval 24567 limcco 25943 dvcnp2 25970 dvcnp2OLD 25971 dvmulbr 25990 dvcobr 25998 dvcnvlem 26029 taylthlem2 26431 taylthlem2OLD 26432 jensen 27047 f1otrg 28894 nsgqusf1olem1 33421 txomap 33795 probmeasb 34412 fsum2dsub 34601 cvmlift2lem9 35296 prdsbnd2 37782 iocopn 45473 icoopn 45478 reclimc 45609 cncfiooicclem1 45849 itgiccshift 45936 dirkercncflem4 46062 fourierdlem32 46095 fourierdlem33 46096 fourierdlem60 46122 fourierdlem61 46123 fourierdlem76 46138 fourierdlem81 46143 fourierdlem90 46152 fourierdlem111 46173 |
Copyright terms: Public domain | W3C validator |