MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3eltr3d Structured version   Visualization version   GIF version

Theorem 3eltr3d 2854
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr3d.1 (𝜑𝐴𝐵)
3eltr3d.2 (𝜑𝐴 = 𝐶)
3eltr3d.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3eltr3d (𝜑𝐶𝐷)

Proof of Theorem 3eltr3d
StepHypRef Expression
1 3eltr3d.2 . 2 (𝜑𝐴 = 𝐶)
2 3eltr3d.1 . . 3 (𝜑𝐴𝐵)
3 3eltr3d.3 . . 3 (𝜑𝐵 = 𝐷)
42, 3eleqtrd 2842 . 2 (𝜑𝐴𝐷)
51, 4eqeltrrd 2841 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2731  df-clel 2817
This theorem is referenced by:  axcc2lem  10201  axcclem  10222  icoshftf1o  13215  lincmb01cmp  13236  fzosubel  13455  symgsubmefmndALT  19020  psgnunilem1  19110  efgcpbllemb  19370  lspprabs  20366  cnmpt2res  22837  xpstopnlem1  22969  tususp  23433  tustps  23434  ressxms  23690  ressms  23691  tmsxpsval  23703  limcco  25066  dvcnp2  25093  dvcnvlem  25149  taylthlem2  25542  jensen  26147  f1otrg  27241  nsgqusf1olem1  31607  txomap  31793  probmeasb  32406  fsum2dsub  32596  cvmlift2lem9  33282  prdsbnd2  35962  iocopn  43065  icoopn  43070  reclimc  43201  cncfiooicclem1  43441  itgiccshift  43528  dirkercncflem4  43654  fourierdlem32  43687  fourierdlem33  43688  fourierdlem60  43714  fourierdlem61  43715  fourierdlem76  43730  fourierdlem81  43735  fourierdlem90  43744  fourierdlem111  43765
  Copyright terms: Public domain W3C validator