| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eltr3d | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3eltr3d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 3eltr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3eltr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eltr3d | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr3d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3eltr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | 3eltr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | eleqtrd 2830 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| 5 | 1, 4 | eqeltrrd 2829 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: axcc2lem 10349 axcclem 10370 icoshftf1o 13395 lincmb01cmp 13416 fzosubel 13645 symgsubmefmndALT 19300 psgnunilem1 19390 efgcpbllemb 19652 lspprabs 21017 cnmpt2res 23580 xpstopnlem1 23712 tususp 24175 tustps 24176 ressxms 24429 ressms 24430 tmsxpsval 24442 limcco 25810 dvcnp2 25837 dvcnp2OLD 25838 dvmulbr 25857 dvcobr 25865 dvcnvlem 25896 taylthlem2 26298 taylthlem2OLD 26299 jensen 26915 f1otrg 28834 nsgqusf1olem1 33363 txomap 33803 probmeasb 34400 fsum2dsub 34577 cvmlift2lem9 35286 prdsbnd2 37777 iocopn 45505 icoopn 45510 reclimc 45638 cncfiooicclem1 45878 itgiccshift 45965 dirkercncflem4 46091 fourierdlem32 46124 fourierdlem33 46125 fourierdlem60 46151 fourierdlem61 46152 fourierdlem76 46167 fourierdlem81 46172 fourierdlem90 46181 fourierdlem111 46202 uptrlem3 49201 fuco2eld3 49304 fucoid2 49338 |
| Copyright terms: Public domain | W3C validator |