![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eltr3d | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr3d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
3eltr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3eltr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3eltr3d | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr3d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 3eltr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
3 | 3eltr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | eleqtrd 2887 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
5 | 1, 4 | eqeltrrd 2886 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1525 ∈ wcel 2083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1766 df-cleq 2790 df-clel 2865 |
This theorem is referenced by: axcc2lem 9711 axcclem 9732 icoshftf1o 12714 lincmb01cmp 12735 fzosubel 12950 psgnunilem1 18356 efgcpbllemb 18612 lspprabs 19561 cnmpt2res 21973 xpstopnlem1 22105 tususp 22568 tustps 22569 ressxms 22822 ressms 22823 tmsxpsval 22835 limcco 24178 dvcnp2 24204 dvcnvlem 24260 taylthlem2 24649 jensen 25252 f1otrg 26344 txomap 30711 probmeasb 31301 fsum2dsub 31491 cvmlift2lem9 32168 prdsbnd2 34626 iocopn 41359 icoopn 41364 reclimc 41497 cncfiooicclem1 41739 itgiccshift 41828 dirkercncflem4 41955 fourierdlem32 41988 fourierdlem33 41989 fourierdlem60 42015 fourierdlem61 42016 fourierdlem76 42031 fourierdlem81 42036 fourierdlem90 42045 fourierdlem111 42066 |
Copyright terms: Public domain | W3C validator |