Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eltr3d | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr3d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
3eltr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3eltr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3eltr3d | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr3d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 3eltr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
3 | 3eltr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | eleqtrd 2842 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
5 | 1, 4 | eqeltrrd 2841 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2731 df-clel 2817 |
This theorem is referenced by: axcc2lem 10201 axcclem 10222 icoshftf1o 13215 lincmb01cmp 13236 fzosubel 13455 symgsubmefmndALT 19020 psgnunilem1 19110 efgcpbllemb 19370 lspprabs 20366 cnmpt2res 22837 xpstopnlem1 22969 tususp 23433 tustps 23434 ressxms 23690 ressms 23691 tmsxpsval 23703 limcco 25066 dvcnp2 25093 dvcnvlem 25149 taylthlem2 25542 jensen 26147 f1otrg 27241 nsgqusf1olem1 31607 txomap 31793 probmeasb 32406 fsum2dsub 32596 cvmlift2lem9 33282 prdsbnd2 35962 iocopn 43065 icoopn 43070 reclimc 43201 cncfiooicclem1 43441 itgiccshift 43528 dirkercncflem4 43654 fourierdlem32 43687 fourierdlem33 43688 fourierdlem60 43714 fourierdlem61 43715 fourierdlem76 43730 fourierdlem81 43735 fourierdlem90 43744 fourierdlem111 43765 |
Copyright terms: Public domain | W3C validator |