| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eltr3d | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3eltr3d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 3eltr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3eltr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eltr3d | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr3d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3eltr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | 3eltr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | eleqtrd 2836 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| 5 | 1, 4 | eqeltrrd 2835 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-clel 2809 |
| This theorem is referenced by: axcc2lem 10450 axcclem 10471 icoshftf1o 13491 lincmb01cmp 13512 fzosubel 13740 symgsubmefmndALT 19384 psgnunilem1 19474 efgcpbllemb 19736 lspprabs 21053 cnmpt2res 23615 xpstopnlem1 23747 tususp 24210 tustps 24211 ressxms 24464 ressms 24465 tmsxpsval 24477 limcco 25846 dvcnp2 25873 dvcnp2OLD 25874 dvmulbr 25893 dvcobr 25901 dvcnvlem 25932 taylthlem2 26334 taylthlem2OLD 26335 jensen 26951 f1otrg 28850 nsgqusf1olem1 33428 txomap 33865 probmeasb 34462 fsum2dsub 34639 cvmlift2lem9 35333 prdsbnd2 37819 iocopn 45549 icoopn 45554 reclimc 45682 cncfiooicclem1 45922 itgiccshift 46009 dirkercncflem4 46135 fourierdlem32 46168 fourierdlem33 46169 fourierdlem60 46195 fourierdlem61 46196 fourierdlem76 46211 fourierdlem81 46216 fourierdlem90 46225 fourierdlem111 46246 fuco2eld3 49226 fucoid2 49260 |
| Copyright terms: Public domain | W3C validator |