Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eltr3d | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr3d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
3eltr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3eltr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3eltr3d | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr3d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 3eltr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
3 | 3eltr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | eleqtrd 2841 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
5 | 1, 4 | eqeltrrd 2840 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: axcc2lem 10123 axcclem 10144 icoshftf1o 13135 lincmb01cmp 13156 fzosubel 13374 symgsubmefmndALT 18926 psgnunilem1 19016 efgcpbllemb 19276 lspprabs 20272 cnmpt2res 22736 xpstopnlem1 22868 tususp 23332 tustps 23333 ressxms 23587 ressms 23588 tmsxpsval 23600 limcco 24962 dvcnp2 24989 dvcnvlem 25045 taylthlem2 25438 jensen 26043 f1otrg 27136 nsgqusf1olem1 31500 txomap 31686 probmeasb 32297 fsum2dsub 32487 cvmlift2lem9 33173 prdsbnd2 35880 iocopn 42948 icoopn 42953 reclimc 43084 cncfiooicclem1 43324 itgiccshift 43411 dirkercncflem4 43537 fourierdlem32 43570 fourierdlem33 43571 fourierdlem60 43597 fourierdlem61 43598 fourierdlem76 43613 fourierdlem81 43618 fourierdlem90 43627 fourierdlem111 43648 |
Copyright terms: Public domain | W3C validator |