| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eltr3d | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3eltr3d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 3eltr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3eltr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eltr3d | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr3d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3eltr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | 3eltr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | eleqtrd 2830 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| 5 | 1, 4 | eqeltrrd 2829 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: axcc2lem 10389 axcclem 10410 icoshftf1o 13435 lincmb01cmp 13456 fzosubel 13685 symgsubmefmndALT 19333 psgnunilem1 19423 efgcpbllemb 19685 lspprabs 21002 cnmpt2res 23564 xpstopnlem1 23696 tususp 24159 tustps 24160 ressxms 24413 ressms 24414 tmsxpsval 24426 limcco 25794 dvcnp2 25821 dvcnp2OLD 25822 dvmulbr 25841 dvcobr 25849 dvcnvlem 25880 taylthlem2 26282 taylthlem2OLD 26283 jensen 26899 f1otrg 28798 nsgqusf1olem1 33384 txomap 33824 probmeasb 34421 fsum2dsub 34598 cvmlift2lem9 35298 prdsbnd2 37789 iocopn 45518 icoopn 45523 reclimc 45651 cncfiooicclem1 45891 itgiccshift 45978 dirkercncflem4 46104 fourierdlem32 46137 fourierdlem33 46138 fourierdlem60 46164 fourierdlem61 46165 fourierdlem76 46180 fourierdlem81 46185 fourierdlem90 46194 fourierdlem111 46215 uptrlem3 49201 fuco2eld3 49304 fucoid2 49338 |
| Copyright terms: Public domain | W3C validator |