![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eltr3d | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr3d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
3eltr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3eltr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3eltr3d | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr3d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 3eltr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
3 | 3eltr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | eleqtrd 2846 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
5 | 1, 4 | eqeltrrd 2845 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: axcc2lem 10505 axcclem 10526 icoshftf1o 13534 lincmb01cmp 13555 fzosubel 13775 symgsubmefmndALT 19445 psgnunilem1 19535 efgcpbllemb 19797 lspprabs 21117 cnmpt2res 23706 xpstopnlem1 23838 tususp 24302 tustps 24303 ressxms 24559 ressms 24560 tmsxpsval 24572 limcco 25948 dvcnp2 25975 dvcnp2OLD 25976 dvmulbr 25995 dvcobr 26003 dvcnvlem 26034 taylthlem2 26434 taylthlem2OLD 26435 jensen 27050 f1otrg 28897 nsgqusf1olem1 33406 txomap 33780 probmeasb 34395 fsum2dsub 34584 cvmlift2lem9 35279 prdsbnd2 37755 iocopn 45438 icoopn 45443 reclimc 45574 cncfiooicclem1 45814 itgiccshift 45901 dirkercncflem4 46027 fourierdlem32 46060 fourierdlem33 46061 fourierdlem60 46087 fourierdlem61 46088 fourierdlem76 46103 fourierdlem81 46108 fourierdlem90 46117 fourierdlem111 46138 |
Copyright terms: Public domain | W3C validator |