| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eltr3d | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3eltr3d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 3eltr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3eltr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eltr3d | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr3d.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3eltr3d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | 3eltr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | eleqtrd 2835 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| 5 | 1, 4 | eqeltrrd 2834 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-clel 2808 |
| This theorem is referenced by: axcc2lem 10336 axcclem 10357 icoshftf1o 13378 lincmb01cmp 13399 fzosubel 13628 symgsubmefmndALT 19319 psgnunilem1 19409 efgcpbllemb 19671 lspprabs 21033 cnmpt2res 23595 xpstopnlem1 23727 tususp 24189 tustps 24190 ressxms 24443 ressms 24444 tmsxpsval 24456 limcco 25824 dvcnp2 25851 dvcnp2OLD 25852 dvmulbr 25871 dvcobr 25879 dvcnvlem 25910 taylthlem2 26312 taylthlem2OLD 26313 jensen 26929 f1otrg 28852 nsgqusf1olem1 33387 txomap 33870 probmeasb 34466 fsum2dsub 34643 cvmlift2lem9 35378 prdsbnd2 37858 iocopn 45647 icoopn 45652 reclimc 45778 cncfiooicclem1 46018 itgiccshift 46105 dirkercncflem4 46231 fourierdlem32 46264 fourierdlem33 46265 fourierdlem60 46291 fourierdlem61 46292 fourierdlem76 46307 fourierdlem81 46312 fourierdlem90 46321 fourierdlem111 46342 uptrlem3 49340 fuco2eld3 49443 fucoid2 49477 |
| Copyright terms: Public domain | W3C validator |