MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3eltr3d Structured version   Visualization version   GIF version

Theorem 3eltr3d 2847
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr3d.1 (𝜑𝐴𝐵)
3eltr3d.2 (𝜑𝐴 = 𝐶)
3eltr3d.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3eltr3d (𝜑𝐶𝐷)

Proof of Theorem 3eltr3d
StepHypRef Expression
1 3eltr3d.2 . 2 (𝜑𝐴 = 𝐶)
2 3eltr3d.1 . . 3 (𝜑𝐴𝐵)
3 3eltr3d.3 . . 3 (𝜑𝐵 = 𝐷)
42, 3eleqtrd 2835 . 2 (𝜑𝐴𝐷)
51, 4eqeltrrd 2834 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-cleq 2724  df-clel 2810
This theorem is referenced by:  axcc2lem  10433  axcclem  10454  icoshftf1o  13453  lincmb01cmp  13474  fzosubel  13693  symgsubmefmndALT  19273  psgnunilem1  19363  efgcpbllemb  19625  lspprabs  20711  cnmpt2res  23188  xpstopnlem1  23320  tususp  23784  tustps  23785  ressxms  24041  ressms  24042  tmsxpsval  24054  limcco  25417  dvcnp2  25444  dvcnvlem  25500  taylthlem2  25893  jensen  26500  f1otrg  28160  nsgqusf1olem1  32569  txomap  32883  probmeasb  33498  fsum2dsub  33688  cvmlift2lem9  34371  gg-dvcnp2  35243  gg-dvmulbr  35244  gg-dvcobr  35245  prdsbnd2  36749  iocopn  44312  icoopn  44317  reclimc  44448  cncfiooicclem1  44688  itgiccshift  44775  dirkercncflem4  44901  fourierdlem32  44934  fourierdlem33  44935  fourierdlem60  44961  fourierdlem61  44962  fourierdlem76  44977  fourierdlem81  44982  fourierdlem90  44991  fourierdlem111  45012
  Copyright terms: Public domain W3C validator