MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3eltr3d Structured version   Visualization version   GIF version

Theorem 3eltr3d 2848
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr3d.1 (𝜑𝐴𝐵)
3eltr3d.2 (𝜑𝐴 = 𝐶)
3eltr3d.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3eltr3d (𝜑𝐶𝐷)

Proof of Theorem 3eltr3d
StepHypRef Expression
1 3eltr3d.2 . 2 (𝜑𝐴 = 𝐶)
2 3eltr3d.1 . . 3 (𝜑𝐴𝐵)
3 3eltr3d.3 . . 3 (𝜑𝐵 = 𝐷)
42, 3eleqtrd 2836 . 2 (𝜑𝐴𝐷)
51, 4eqeltrrd 2835 1 (𝜑𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2727  df-clel 2809
This theorem is referenced by:  axcc2lem  10450  axcclem  10471  icoshftf1o  13491  lincmb01cmp  13512  fzosubel  13740  symgsubmefmndALT  19384  psgnunilem1  19474  efgcpbllemb  19736  lspprabs  21053  cnmpt2res  23615  xpstopnlem1  23747  tususp  24210  tustps  24211  ressxms  24464  ressms  24465  tmsxpsval  24477  limcco  25846  dvcnp2  25873  dvcnp2OLD  25874  dvmulbr  25893  dvcobr  25901  dvcnvlem  25932  taylthlem2  26334  taylthlem2OLD  26335  jensen  26951  f1otrg  28850  nsgqusf1olem1  33428  txomap  33865  probmeasb  34462  fsum2dsub  34639  cvmlift2lem9  35333  prdsbnd2  37819  iocopn  45549  icoopn  45554  reclimc  45682  cncfiooicclem1  45922  itgiccshift  46009  dirkercncflem4  46135  fourierdlem32  46168  fourierdlem33  46169  fourierdlem60  46195  fourierdlem61  46196  fourierdlem76  46211  fourierdlem81  46216  fourierdlem90  46225  fourierdlem111  46246  fuco2eld3  49226  fucoid2  49260
  Copyright terms: Public domain W3C validator