| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oancom | Structured version Visualization version GIF version | ||
| Description: Ordinal addition is not commutative. This theorem shows a counterexample. Remark in [TakeutiZaring] p. 60. (Contributed by NM, 10-Dec-2004.) |
| Ref | Expression |
|---|---|
| oancom | ⊢ (1o +o ω) ≠ (ω +o 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9539 | . . . 4 ⊢ ω ∈ V | |
| 2 | 1 | sucid 6391 | . . 3 ⊢ ω ∈ suc ω |
| 3 | omelon 9542 | . . . 4 ⊢ ω ∈ On | |
| 4 | 1onn 8558 | . . . 4 ⊢ 1o ∈ ω | |
| 5 | oaabslem 8565 | . . . 4 ⊢ ((ω ∈ On ∧ 1o ∈ ω) → (1o +o ω) = ω) | |
| 6 | 3, 4, 5 | mp2an 692 | . . 3 ⊢ (1o +o ω) = ω |
| 7 | oa1suc 8449 | . . . 4 ⊢ (ω ∈ On → (ω +o 1o) = suc ω) | |
| 8 | 3, 7 | ax-mp 5 | . . 3 ⊢ (ω +o 1o) = suc ω |
| 9 | 2, 6, 8 | 3eltr4i 2841 | . 2 ⊢ (1o +o ω) ∈ (ω +o 1o) |
| 10 | 1on 8400 | . . . . 5 ⊢ 1o ∈ On | |
| 11 | oacl 8453 | . . . . 5 ⊢ ((1o ∈ On ∧ ω ∈ On) → (1o +o ω) ∈ On) | |
| 12 | 10, 3, 11 | mp2an 692 | . . . 4 ⊢ (1o +o ω) ∈ On |
| 13 | oacl 8453 | . . . . 5 ⊢ ((ω ∈ On ∧ 1o ∈ On) → (ω +o 1o) ∈ On) | |
| 14 | 3, 10, 13 | mp2an 692 | . . . 4 ⊢ (ω +o 1o) ∈ On |
| 15 | onelpss 6347 | . . . 4 ⊢ (((1o +o ω) ∈ On ∧ (ω +o 1o) ∈ On) → ((1o +o ω) ∈ (ω +o 1o) ↔ ((1o +o ω) ⊆ (ω +o 1o) ∧ (1o +o ω) ≠ (ω +o 1o)))) | |
| 16 | 12, 14, 15 | mp2an 692 | . . 3 ⊢ ((1o +o ω) ∈ (ω +o 1o) ↔ ((1o +o ω) ⊆ (ω +o 1o) ∧ (1o +o ω) ≠ (ω +o 1o))) |
| 17 | 16 | simprbi 496 | . 2 ⊢ ((1o +o ω) ∈ (ω +o 1o) → (1o +o ω) ≠ (ω +o 1o)) |
| 18 | 9, 17 | ax-mp 5 | 1 ⊢ (1o +o ω) ≠ (ω +o 1o) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3903 Oncon0 6307 suc csuc 6309 (class class class)co 7349 ωcom 7799 1oc1o 8381 +o coa 8385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 |
| This theorem is referenced by: oaomoencom 43294 |
| Copyright terms: Public domain | W3C validator |