MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oancom Structured version   Visualization version   GIF version

Theorem oancom 9580
Description: Ordinal addition is not commutative. This theorem shows a counterexample. Remark in [TakeutiZaring] p. 60. (Contributed by NM, 10-Dec-2004.)
Assertion
Ref Expression
oancom (1o +o ω) ≠ (ω +o 1o)

Proof of Theorem oancom
StepHypRef Expression
1 omex 9572 . . . 4 ω ∈ V
21sucid 6404 . . 3 ω ∈ suc ω
3 omelon 9575 . . . 4 ω ∈ On
4 1onn 8581 . . . 4 1o ∈ ω
5 oaabslem 8588 . . . 4 ((ω ∈ On ∧ 1o ∈ ω) → (1o +o ω) = ω)
63, 4, 5mp2an 692 . . 3 (1o +o ω) = ω
7 oa1suc 8472 . . . 4 (ω ∈ On → (ω +o 1o) = suc ω)
83, 7ax-mp 5 . . 3 (ω +o 1o) = suc ω
92, 6, 83eltr4i 2841 . 2 (1o +o ω) ∈ (ω +o 1o)
10 1on 8423 . . . . 5 1o ∈ On
11 oacl 8476 . . . . 5 ((1o ∈ On ∧ ω ∈ On) → (1o +o ω) ∈ On)
1210, 3, 11mp2an 692 . . . 4 (1o +o ω) ∈ On
13 oacl 8476 . . . . 5 ((ω ∈ On ∧ 1o ∈ On) → (ω +o 1o) ∈ On)
143, 10, 13mp2an 692 . . . 4 (ω +o 1o) ∈ On
15 onelpss 6360 . . . 4 (((1o +o ω) ∈ On ∧ (ω +o 1o) ∈ On) → ((1o +o ω) ∈ (ω +o 1o) ↔ ((1o +o ω) ⊆ (ω +o 1o) ∧ (1o +o ω) ≠ (ω +o 1o))))
1612, 14, 15mp2an 692 . . 3 ((1o +o ω) ∈ (ω +o 1o) ↔ ((1o +o ω) ⊆ (ω +o 1o) ∧ (1o +o ω) ≠ (ω +o 1o)))
1716simprbi 496 . 2 ((1o +o ω) ∈ (ω +o 1o) → (1o +o ω) ≠ (ω +o 1o))
189, 17ax-mp 5 1 (1o +o ω) ≠ (ω +o 1o)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wss 3911  Oncon0 6320  suc csuc 6322  (class class class)co 7369  ωcom 7822  1oc1o 8404   +o coa 8408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415
This theorem is referenced by:  oaomoencom  43299
  Copyright terms: Public domain W3C validator