![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oancom | Structured version Visualization version GIF version |
Description: Ordinal addition is not commutative. This theorem shows a counterexample. Remark in [TakeutiZaring] p. 60. (Contributed by NM, 10-Dec-2004.) |
Ref | Expression |
---|---|
oancom | ⊢ (1o +o ω) ≠ (ω +o 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 9667 | . . . 4 ⊢ ω ∈ V | |
2 | 1 | sucid 6451 | . . 3 ⊢ ω ∈ suc ω |
3 | omelon 9670 | . . . 4 ⊢ ω ∈ On | |
4 | 1onn 8661 | . . . 4 ⊢ 1o ∈ ω | |
5 | oaabslem 8668 | . . . 4 ⊢ ((ω ∈ On ∧ 1o ∈ ω) → (1o +o ω) = ω) | |
6 | 3, 4, 5 | mp2an 691 | . . 3 ⊢ (1o +o ω) = ω |
7 | oa1suc 8552 | . . . 4 ⊢ (ω ∈ On → (ω +o 1o) = suc ω) | |
8 | 3, 7 | ax-mp 5 | . . 3 ⊢ (ω +o 1o) = suc ω |
9 | 2, 6, 8 | 3eltr4i 2842 | . 2 ⊢ (1o +o ω) ∈ (ω +o 1o) |
10 | 1on 8499 | . . . . 5 ⊢ 1o ∈ On | |
11 | oacl 8556 | . . . . 5 ⊢ ((1o ∈ On ∧ ω ∈ On) → (1o +o ω) ∈ On) | |
12 | 10, 3, 11 | mp2an 691 | . . . 4 ⊢ (1o +o ω) ∈ On |
13 | oacl 8556 | . . . . 5 ⊢ ((ω ∈ On ∧ 1o ∈ On) → (ω +o 1o) ∈ On) | |
14 | 3, 10, 13 | mp2an 691 | . . . 4 ⊢ (ω +o 1o) ∈ On |
15 | onelpss 6409 | . . . 4 ⊢ (((1o +o ω) ∈ On ∧ (ω +o 1o) ∈ On) → ((1o +o ω) ∈ (ω +o 1o) ↔ ((1o +o ω) ⊆ (ω +o 1o) ∧ (1o +o ω) ≠ (ω +o 1o)))) | |
16 | 12, 14, 15 | mp2an 691 | . . 3 ⊢ ((1o +o ω) ∈ (ω +o 1o) ↔ ((1o +o ω) ⊆ (ω +o 1o) ∧ (1o +o ω) ≠ (ω +o 1o))) |
17 | 16 | simprbi 496 | . 2 ⊢ ((1o +o ω) ∈ (ω +o 1o) → (1o +o ω) ≠ (ω +o 1o)) |
18 | 9, 17 | ax-mp 5 | 1 ⊢ (1o +o ω) ≠ (ω +o 1o) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ⊆ wss 3947 Oncon0 6369 suc csuc 6371 (class class class)co 7420 ωcom 7870 1oc1o 8480 +o coa 8484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 ax-inf2 9665 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-oadd 8491 |
This theorem is referenced by: oaomoencom 42746 |
Copyright terms: Public domain | W3C validator |