![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oancom | Structured version Visualization version GIF version |
Description: Ordinal addition is not commutative. This theorem shows a counterexample. Remark in [TakeutiZaring] p. 60. (Contributed by NM, 10-Dec-2004.) |
Ref | Expression |
---|---|
oancom | ⊢ (1o +o ω) ≠ (ω +o 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 9635 | . . . 4 ⊢ ω ∈ V | |
2 | 1 | sucid 6437 | . . 3 ⊢ ω ∈ suc ω |
3 | omelon 9638 | . . . 4 ⊢ ω ∈ On | |
4 | 1onn 8636 | . . . 4 ⊢ 1o ∈ ω | |
5 | oaabslem 8643 | . . . 4 ⊢ ((ω ∈ On ∧ 1o ∈ ω) → (1o +o ω) = ω) | |
6 | 3, 4, 5 | mp2an 689 | . . 3 ⊢ (1o +o ω) = ω |
7 | oa1suc 8527 | . . . 4 ⊢ (ω ∈ On → (ω +o 1o) = suc ω) | |
8 | 3, 7 | ax-mp 5 | . . 3 ⊢ (ω +o 1o) = suc ω |
9 | 2, 6, 8 | 3eltr4i 2838 | . 2 ⊢ (1o +o ω) ∈ (ω +o 1o) |
10 | 1on 8474 | . . . . 5 ⊢ 1o ∈ On | |
11 | oacl 8531 | . . . . 5 ⊢ ((1o ∈ On ∧ ω ∈ On) → (1o +o ω) ∈ On) | |
12 | 10, 3, 11 | mp2an 689 | . . . 4 ⊢ (1o +o ω) ∈ On |
13 | oacl 8531 | . . . . 5 ⊢ ((ω ∈ On ∧ 1o ∈ On) → (ω +o 1o) ∈ On) | |
14 | 3, 10, 13 | mp2an 689 | . . . 4 ⊢ (ω +o 1o) ∈ On |
15 | onelpss 6395 | . . . 4 ⊢ (((1o +o ω) ∈ On ∧ (ω +o 1o) ∈ On) → ((1o +o ω) ∈ (ω +o 1o) ↔ ((1o +o ω) ⊆ (ω +o 1o) ∧ (1o +o ω) ≠ (ω +o 1o)))) | |
16 | 12, 14, 15 | mp2an 689 | . . 3 ⊢ ((1o +o ω) ∈ (ω +o 1o) ↔ ((1o +o ω) ⊆ (ω +o 1o) ∧ (1o +o ω) ≠ (ω +o 1o))) |
17 | 16 | simprbi 496 | . 2 ⊢ ((1o +o ω) ∈ (ω +o 1o) → (1o +o ω) ≠ (ω +o 1o)) |
18 | 9, 17 | ax-mp 5 | 1 ⊢ (1o +o ω) ≠ (ω +o 1o) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ⊆ wss 3941 Oncon0 6355 suc csuc 6357 (class class class)co 7402 ωcom 7849 1oc1o 8455 +o coa 8459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 ax-inf2 9633 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 |
This theorem is referenced by: oaomoencom 42617 |
Copyright terms: Public domain | W3C validator |