![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oancom | Structured version Visualization version GIF version |
Description: Ordinal addition is not commutative. This theorem shows a counterexample. Remark in [TakeutiZaring] p. 60. (Contributed by NM, 10-Dec-2004.) |
Ref | Expression |
---|---|
oancom | ⊢ (1o +o ω) ≠ (ω +o 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 9637 | . . . 4 ⊢ ω ∈ V | |
2 | 1 | sucid 6446 | . . 3 ⊢ ω ∈ suc ω |
3 | omelon 9640 | . . . 4 ⊢ ω ∈ On | |
4 | 1onn 8638 | . . . 4 ⊢ 1o ∈ ω | |
5 | oaabslem 8645 | . . . 4 ⊢ ((ω ∈ On ∧ 1o ∈ ω) → (1o +o ω) = ω) | |
6 | 3, 4, 5 | mp2an 690 | . . 3 ⊢ (1o +o ω) = ω |
7 | oa1suc 8530 | . . . 4 ⊢ (ω ∈ On → (ω +o 1o) = suc ω) | |
8 | 3, 7 | ax-mp 5 | . . 3 ⊢ (ω +o 1o) = suc ω |
9 | 2, 6, 8 | 3eltr4i 2846 | . 2 ⊢ (1o +o ω) ∈ (ω +o 1o) |
10 | 1on 8477 | . . . . 5 ⊢ 1o ∈ On | |
11 | oacl 8534 | . . . . 5 ⊢ ((1o ∈ On ∧ ω ∈ On) → (1o +o ω) ∈ On) | |
12 | 10, 3, 11 | mp2an 690 | . . . 4 ⊢ (1o +o ω) ∈ On |
13 | oacl 8534 | . . . . 5 ⊢ ((ω ∈ On ∧ 1o ∈ On) → (ω +o 1o) ∈ On) | |
14 | 3, 10, 13 | mp2an 690 | . . . 4 ⊢ (ω +o 1o) ∈ On |
15 | onelpss 6404 | . . . 4 ⊢ (((1o +o ω) ∈ On ∧ (ω +o 1o) ∈ On) → ((1o +o ω) ∈ (ω +o 1o) ↔ ((1o +o ω) ⊆ (ω +o 1o) ∧ (1o +o ω) ≠ (ω +o 1o)))) | |
16 | 12, 14, 15 | mp2an 690 | . . 3 ⊢ ((1o +o ω) ∈ (ω +o 1o) ↔ ((1o +o ω) ⊆ (ω +o 1o) ∧ (1o +o ω) ≠ (ω +o 1o))) |
17 | 16 | simprbi 497 | . 2 ⊢ ((1o +o ω) ∈ (ω +o 1o) → (1o +o ω) ≠ (ω +o 1o)) |
18 | 9, 17 | ax-mp 5 | 1 ⊢ (1o +o ω) ≠ (ω +o 1o) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ⊆ wss 3948 Oncon0 6364 suc csuc 6366 (class class class)co 7408 ωcom 7854 1oc1o 8458 +o coa 8462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-oadd 8469 |
This theorem is referenced by: oaomoencom 42057 |
Copyright terms: Public domain | W3C validator |