| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oancom | Structured version Visualization version GIF version | ||
| Description: Ordinal addition is not commutative. This theorem shows a counterexample. Remark in [TakeutiZaring] p. 60. (Contributed by NM, 10-Dec-2004.) |
| Ref | Expression |
|---|---|
| oancom | ⊢ (1o +o ω) ≠ (ω +o 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9533 | . . . 4 ⊢ ω ∈ V | |
| 2 | 1 | sucid 6390 | . . 3 ⊢ ω ∈ suc ω |
| 3 | omelon 9536 | . . . 4 ⊢ ω ∈ On | |
| 4 | 1onn 8555 | . . . 4 ⊢ 1o ∈ ω | |
| 5 | oaabslem 8562 | . . . 4 ⊢ ((ω ∈ On ∧ 1o ∈ ω) → (1o +o ω) = ω) | |
| 6 | 3, 4, 5 | mp2an 692 | . . 3 ⊢ (1o +o ω) = ω |
| 7 | oa1suc 8446 | . . . 4 ⊢ (ω ∈ On → (ω +o 1o) = suc ω) | |
| 8 | 3, 7 | ax-mp 5 | . . 3 ⊢ (ω +o 1o) = suc ω |
| 9 | 2, 6, 8 | 3eltr4i 2844 | . 2 ⊢ (1o +o ω) ∈ (ω +o 1o) |
| 10 | 1on 8397 | . . . . 5 ⊢ 1o ∈ On | |
| 11 | oacl 8450 | . . . . 5 ⊢ ((1o ∈ On ∧ ω ∈ On) → (1o +o ω) ∈ On) | |
| 12 | 10, 3, 11 | mp2an 692 | . . . 4 ⊢ (1o +o ω) ∈ On |
| 13 | oacl 8450 | . . . . 5 ⊢ ((ω ∈ On ∧ 1o ∈ On) → (ω +o 1o) ∈ On) | |
| 14 | 3, 10, 13 | mp2an 692 | . . . 4 ⊢ (ω +o 1o) ∈ On |
| 15 | onelpss 6346 | . . . 4 ⊢ (((1o +o ω) ∈ On ∧ (ω +o 1o) ∈ On) → ((1o +o ω) ∈ (ω +o 1o) ↔ ((1o +o ω) ⊆ (ω +o 1o) ∧ (1o +o ω) ≠ (ω +o 1o)))) | |
| 16 | 12, 14, 15 | mp2an 692 | . . 3 ⊢ ((1o +o ω) ∈ (ω +o 1o) ↔ ((1o +o ω) ⊆ (ω +o 1o) ∧ (1o +o ω) ≠ (ω +o 1o))) |
| 17 | 16 | simprbi 496 | . 2 ⊢ ((1o +o ω) ∈ (ω +o 1o) → (1o +o ω) ≠ (ω +o 1o)) |
| 18 | 9, 17 | ax-mp 5 | 1 ⊢ (1o +o ω) ≠ (ω +o 1o) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3897 Oncon0 6306 suc csuc 6308 (class class class)co 7346 ωcom 7796 1oc1o 8378 +o coa 8382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 |
| This theorem is referenced by: oaomoencom 43420 |
| Copyright terms: Public domain | W3C validator |