MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oancom Structured version   Visualization version   GIF version

Theorem oancom 9720
Description: Ordinal addition is not commutative. This theorem shows a counterexample. Remark in [TakeutiZaring] p. 60. (Contributed by NM, 10-Dec-2004.)
Assertion
Ref Expression
oancom (1o +o ω) ≠ (ω +o 1o)

Proof of Theorem oancom
StepHypRef Expression
1 omex 9712 . . . 4 ω ∈ V
21sucid 6477 . . 3 ω ∈ suc ω
3 omelon 9715 . . . 4 ω ∈ On
4 1onn 8696 . . . 4 1o ∈ ω
5 oaabslem 8703 . . . 4 ((ω ∈ On ∧ 1o ∈ ω) → (1o +o ω) = ω)
63, 4, 5mp2an 691 . . 3 (1o +o ω) = ω
7 oa1suc 8587 . . . 4 (ω ∈ On → (ω +o 1o) = suc ω)
83, 7ax-mp 5 . . 3 (ω +o 1o) = suc ω
92, 6, 83eltr4i 2857 . 2 (1o +o ω) ∈ (ω +o 1o)
10 1on 8534 . . . . 5 1o ∈ On
11 oacl 8591 . . . . 5 ((1o ∈ On ∧ ω ∈ On) → (1o +o ω) ∈ On)
1210, 3, 11mp2an 691 . . . 4 (1o +o ω) ∈ On
13 oacl 8591 . . . . 5 ((ω ∈ On ∧ 1o ∈ On) → (ω +o 1o) ∈ On)
143, 10, 13mp2an 691 . . . 4 (ω +o 1o) ∈ On
15 onelpss 6435 . . . 4 (((1o +o ω) ∈ On ∧ (ω +o 1o) ∈ On) → ((1o +o ω) ∈ (ω +o 1o) ↔ ((1o +o ω) ⊆ (ω +o 1o) ∧ (1o +o ω) ≠ (ω +o 1o))))
1612, 14, 15mp2an 691 . . 3 ((1o +o ω) ∈ (ω +o 1o) ↔ ((1o +o ω) ⊆ (ω +o 1o) ∧ (1o +o ω) ≠ (ω +o 1o)))
1716simprbi 496 . 2 ((1o +o ω) ∈ (ω +o 1o) → (1o +o ω) ≠ (ω +o 1o))
189, 17ax-mp 5 1 (1o +o ω) ≠ (ω +o 1o)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wss 3976  Oncon0 6395  suc csuc 6397  (class class class)co 7448  ωcom 7903  1oc1o 8515   +o coa 8519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526
This theorem is referenced by:  oaomoencom  43279
  Copyright terms: Public domain W3C validator