MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0r Structured version   Visualization version   GIF version

Theorem 0r 11099
Description: The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
0r 0RR

Proof of Theorem 0r
StepHypRef Expression
1 1pr 11034 . . . 4 1PP
2 opelxpi 5696 . . . 4 ((1PP ∧ 1PP) → ⟨1P, 1P⟩ ∈ (P × P))
31, 1, 2mp2an 692 . . 3 ⟨1P, 1P⟩ ∈ (P × P)
4 enrex 11086 . . . 4 ~R ∈ V
54ecelqsi 8792 . . 3 (⟨1P, 1P⟩ ∈ (P × P) → [⟨1P, 1P⟩] ~R ∈ ((P × P) / ~R ))
63, 5ax-mp 5 . 2 [⟨1P, 1P⟩] ~R ∈ ((P × P) / ~R )
7 df-0r 11079 . 2 0R = [⟨1P, 1P⟩] ~R
8 df-nr 11075 . 2 R = ((P × P) / ~R )
96, 7, 83eltr4i 2848 1 0RR
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  cop 4612   × cxp 5657  [cec 8722   / cqs 8723  Pcnp 10878  1Pc1p 10879   ~R cer 10883  Rcnr 10884  0Rc0r 10885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490  df-er 8724  df-ec 8726  df-qs 8730  df-ni 10891  df-pli 10892  df-mi 10893  df-lti 10894  df-plpq 10927  df-mpq 10928  df-ltpq 10929  df-enq 10930  df-nq 10931  df-erq 10932  df-plq 10933  df-mq 10934  df-1nq 10935  df-rq 10936  df-ltnq 10937  df-np 11000  df-1p 11001  df-enr 11074  df-nr 11075  df-0r 11079
This theorem is referenced by:  sqgt0sr  11125  opelreal  11149  elreal  11150  elreal2  11151  eqresr  11156  addresr  11157  mulresr  11158  axresscn  11167  axicn  11169  axi2m1  11178  axcnre  11183
  Copyright terms: Public domain W3C validator