| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0r | Structured version Visualization version GIF version | ||
| Description: The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0r | ⊢ 0R ∈ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr 10916 | . . . 4 ⊢ 1P ∈ P | |
| 2 | opelxpi 5658 | . . . 4 ⊢ ((1P ∈ P ∧ 1P ∈ P) → 〈1P, 1P〉 ∈ (P × P)) | |
| 3 | 1, 1, 2 | mp2an 692 | . . 3 ⊢ 〈1P, 1P〉 ∈ (P × P) |
| 4 | enrex 10968 | . . . 4 ⊢ ~R ∈ V | |
| 5 | 4 | ecelqsi 8703 | . . 3 ⊢ (〈1P, 1P〉 ∈ (P × P) → [〈1P, 1P〉] ~R ∈ ((P × P) / ~R )) |
| 6 | 3, 5 | ax-mp 5 | . 2 ⊢ [〈1P, 1P〉] ~R ∈ ((P × P) / ~R ) |
| 7 | df-0r 10961 | . 2 ⊢ 0R = [〈1P, 1P〉] ~R | |
| 8 | df-nr 10957 | . 2 ⊢ R = ((P × P) / ~R ) | |
| 9 | 6, 7, 8 | 3eltr4i 2846 | 1 ⊢ 0R ∈ R |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 〈cop 4583 × cxp 5619 [cec 8629 / cqs 8630 Pcnp 10760 1Pc1p 10761 ~R cer 10765 Rcnr 10766 0Rc0r 10767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9541 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-oadd 8398 df-omul 8399 df-er 8631 df-ec 8633 df-qs 8637 df-ni 10773 df-pli 10774 df-mi 10775 df-lti 10776 df-plpq 10809 df-mpq 10810 df-ltpq 10811 df-enq 10812 df-nq 10813 df-erq 10814 df-plq 10815 df-mq 10816 df-1nq 10817 df-rq 10818 df-ltnq 10819 df-np 10882 df-1p 10883 df-enr 10956 df-nr 10957 df-0r 10961 |
| This theorem is referenced by: sqgt0sr 11007 opelreal 11031 elreal 11032 elreal2 11033 eqresr 11038 addresr 11039 mulresr 11040 axresscn 11049 axicn 11051 axi2m1 11060 axcnre 11065 |
| Copyright terms: Public domain | W3C validator |