Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0r | Structured version Visualization version GIF version |
Description: The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0r | ⊢ 0R ∈ R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pr 10658 | . . . 4 ⊢ 1P ∈ P | |
2 | opelxpi 5605 | . . . 4 ⊢ ((1P ∈ P ∧ 1P ∈ P) → 〈1P, 1P〉 ∈ (P × P)) | |
3 | 1, 1, 2 | mp2an 692 | . . 3 ⊢ 〈1P, 1P〉 ∈ (P × P) |
4 | enrex 10710 | . . . 4 ⊢ ~R ∈ V | |
5 | 4 | ecelqsi 8478 | . . 3 ⊢ (〈1P, 1P〉 ∈ (P × P) → [〈1P, 1P〉] ~R ∈ ((P × P) / ~R )) |
6 | 3, 5 | ax-mp 5 | . 2 ⊢ [〈1P, 1P〉] ~R ∈ ((P × P) / ~R ) |
7 | df-0r 10703 | . 2 ⊢ 0R = [〈1P, 1P〉] ~R | |
8 | df-nr 10699 | . 2 ⊢ R = ((P × P) / ~R ) | |
9 | 6, 7, 8 | 3eltr4i 2853 | 1 ⊢ 0R ∈ R |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2112 〈cop 4563 × cxp 5566 [cec 8412 / cqs 8413 Pcnp 10502 1Pc1p 10503 ~R cer 10507 Rcnr 10508 0Rc0r 10509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-inf2 9285 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-int 4876 df-iun 4922 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-ov 7237 df-oprab 7238 df-mpo 7239 df-om 7666 df-1st 7782 df-2nd 7783 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-oadd 8229 df-omul 8230 df-er 8414 df-ec 8416 df-qs 8420 df-ni 10515 df-pli 10516 df-mi 10517 df-lti 10518 df-plpq 10551 df-mpq 10552 df-ltpq 10553 df-enq 10554 df-nq 10555 df-erq 10556 df-plq 10557 df-mq 10558 df-1nq 10559 df-rq 10560 df-ltnq 10561 df-np 10624 df-1p 10625 df-enr 10698 df-nr 10699 df-0r 10703 |
This theorem is referenced by: sqgt0sr 10749 opelreal 10773 elreal 10774 elreal2 10775 eqresr 10780 addresr 10781 mulresr 10782 axresscn 10791 axicn 10793 axi2m1 10802 axcnre 10807 |
Copyright terms: Public domain | W3C validator |