| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0r | Structured version Visualization version GIF version | ||
| Description: The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0r | ⊢ 0R ∈ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr 10898 | . . . 4 ⊢ 1P ∈ P | |
| 2 | opelxpi 5651 | . . . 4 ⊢ ((1P ∈ P ∧ 1P ∈ P) → 〈1P, 1P〉 ∈ (P × P)) | |
| 3 | 1, 1, 2 | mp2an 692 | . . 3 ⊢ 〈1P, 1P〉 ∈ (P × P) |
| 4 | enrex 10950 | . . . 4 ⊢ ~R ∈ V | |
| 5 | 4 | ecelqsi 8689 | . . 3 ⊢ (〈1P, 1P〉 ∈ (P × P) → [〈1P, 1P〉] ~R ∈ ((P × P) / ~R )) |
| 6 | 3, 5 | ax-mp 5 | . 2 ⊢ [〈1P, 1P〉] ~R ∈ ((P × P) / ~R ) |
| 7 | df-0r 10943 | . 2 ⊢ 0R = [〈1P, 1P〉] ~R | |
| 8 | df-nr 10939 | . 2 ⊢ R = ((P × P) / ~R ) | |
| 9 | 6, 7, 8 | 3eltr4i 2842 | 1 ⊢ 0R ∈ R |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2110 〈cop 4580 × cxp 5612 [cec 8615 / cqs 8616 Pcnp 10742 1Pc1p 10743 ~R cer 10747 Rcnr 10748 0Rc0r 10749 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-omul 8385 df-er 8617 df-ec 8619 df-qs 8623 df-ni 10755 df-pli 10756 df-mi 10757 df-lti 10758 df-plpq 10791 df-mpq 10792 df-ltpq 10793 df-enq 10794 df-nq 10795 df-erq 10796 df-plq 10797 df-mq 10798 df-1nq 10799 df-rq 10800 df-ltnq 10801 df-np 10864 df-1p 10865 df-enr 10938 df-nr 10939 df-0r 10943 |
| This theorem is referenced by: sqgt0sr 10989 opelreal 11013 elreal 11014 elreal2 11015 eqresr 11020 addresr 11021 mulresr 11022 axresscn 11031 axicn 11033 axi2m1 11042 axcnre 11047 |
| Copyright terms: Public domain | W3C validator |