MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad4ant23 Structured version   Visualization version   GIF version

Theorem ad4ant23 753
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad4ant23 ((((𝜃𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒)

Proof of Theorem ad4ant23
StepHypRef Expression
1 ad4ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantr 480 . 2 (((𝜑𝜓) ∧ 𝜏) → 𝜒)
32adantlll 718 1 ((((𝜃𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  fntpb  7138  suppssfv  8127  omsmolem  8567  ttukeylem5  10399  rlim3  15400  mp2pm2mplem4  22719  chfacfisf  22764  chfacfisfcpmat  22765  mbfi1fseqlem3  25640  usgredg2vlem2  29199  umgr3v3e3cycl  30156  zringfrac  33511  matunitlindflem1  37656  matunitlindflem2  37657  heicant  37695  naddgeoa  43427  difmap  45244  xlimmnfvlem2  45871  xlimpnfvlem2  45875  xlimliminflimsup  45900  sge0resplit  46444  hoidmvle  46638  grimcnv  47919  eenglngeehlnmlem2  48770
  Copyright terms: Public domain W3C validator