![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad4ant23 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
Ref | Expression |
---|---|
ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad4ant23 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantr 480 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜒) |
3 | 2 | adantlll 717 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: fntpb 7246 suppssfv 8243 omsmolem 8713 ttukeylem5 10582 rlim3 15544 mp2pm2mplem4 22836 chfacfisf 22881 chfacfisfcpmat 22882 mbfi1fseqlem3 25772 usgredg2vlem2 29261 umgr3v3e3cycl 30216 zringfrac 33547 matunitlindflem1 37576 matunitlindflem2 37577 heicant 37615 naddgeoa 43356 difmap 45114 xlimmnfvlem2 45754 xlimpnfvlem2 45758 xlimliminflimsup 45783 sge0resplit 46327 hoidmvle 46521 grimcnv 47763 eenglngeehlnmlem2 48472 |
Copyright terms: Public domain | W3C validator |