| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad4ant23 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad4ant23 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantr 480 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜒) |
| 3 | 2 | adantlll 718 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fntpb 7165 suppssfv 8158 omsmolem 8598 ttukeylem5 10442 rlim3 15440 mp2pm2mplem4 22672 chfacfisf 22717 chfacfisfcpmat 22718 mbfi1fseqlem3 25594 usgredg2vlem2 29129 umgr3v3e3cycl 30086 zringfrac 33498 matunitlindflem1 37583 matunitlindflem2 37584 heicant 37622 naddgeoa 43356 difmap 45174 xlimmnfvlem2 45804 xlimpnfvlem2 45808 xlimliminflimsup 45833 sge0resplit 46377 hoidmvle 46571 grimcnv 47861 eenglngeehlnmlem2 48700 |
| Copyright terms: Public domain | W3C validator |