| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad4ant23 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad4ant23 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantr 480 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜒) |
| 3 | 2 | adantlll 718 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fntpb 7206 suppssfv 8206 omsmolem 8674 ttukeylem5 10532 rlim3 15519 mp2pm2mplem4 22752 chfacfisf 22797 chfacfisfcpmat 22798 mbfi1fseqlem3 25675 usgredg2vlem2 29210 umgr3v3e3cycl 30170 zringfrac 33574 matunitlindflem1 37645 matunitlindflem2 37646 heicant 37684 naddgeoa 43385 difmap 45198 xlimmnfvlem2 45829 xlimpnfvlem2 45833 xlimliminflimsup 45858 sge0resplit 46402 hoidmvle 46596 grimcnv 47868 eenglngeehlnmlem2 48685 |
| Copyright terms: Public domain | W3C validator |