MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad4ant23 Structured version   Visualization version   GIF version

Theorem ad4ant23 751
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad4ant23 ((((𝜃𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒)

Proof of Theorem ad4ant23
StepHypRef Expression
1 ad4ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantr 479 . 2 (((𝜑𝜓) ∧ 𝜏) → 𝜒)
32adantlll 716 1 ((((𝜃𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395
This theorem is referenced by:  fntpb  7228  suppssfv  8219  omsmolem  8689  ttukeylem5  10558  rlim3  15502  mp2pm2mplem4  22805  chfacfisf  22850  chfacfisfcpmat  22851  mbfi1fseqlem3  25741  usgredg2vlem2  29165  umgr3v3e3cycl  30120  zringfrac  33431  matunitlindflem1  37319  matunitlindflem2  37320  heicant  37358  naddgeoa  43079  difmap  44832  xlimmnfvlem2  45472  xlimpnfvlem2  45476  xlimliminflimsup  45501  sge0resplit  46045  hoidmvle  46239  grimcnv  47476  eenglngeehlnmlem2  48144
  Copyright terms: Public domain W3C validator