![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad4ant23 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
Ref | Expression |
---|---|
ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad4ant23 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantr 480 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜒) |
3 | 2 | adantlll 718 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: fntpb 7229 suppssfv 8226 omsmolem 8694 ttukeylem5 10551 rlim3 15531 mp2pm2mplem4 22831 chfacfisf 22876 chfacfisfcpmat 22877 mbfi1fseqlem3 25767 usgredg2vlem2 29258 umgr3v3e3cycl 30213 zringfrac 33562 matunitlindflem1 37603 matunitlindflem2 37604 heicant 37642 naddgeoa 43384 difmap 45150 xlimmnfvlem2 45789 xlimpnfvlem2 45793 xlimliminflimsup 45818 sge0resplit 46362 hoidmvle 46556 grimcnv 47817 eenglngeehlnmlem2 48588 |
Copyright terms: Public domain | W3C validator |