| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad4ant23 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad4ant23 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantr 480 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜒) |
| 3 | 2 | adantlll 718 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fntpb 7183 suppssfv 8181 omsmolem 8621 ttukeylem5 10466 rlim3 15464 mp2pm2mplem4 22696 chfacfisf 22741 chfacfisfcpmat 22742 mbfi1fseqlem3 25618 usgredg2vlem2 29153 umgr3v3e3cycl 30113 zringfrac 33525 matunitlindflem1 37610 matunitlindflem2 37611 heicant 37649 naddgeoa 43383 difmap 45201 xlimmnfvlem2 45831 xlimpnfvlem2 45835 xlimliminflimsup 45860 sge0resplit 46404 hoidmvle 46598 grimcnv 47885 eenglngeehlnmlem2 48724 |
| Copyright terms: Public domain | W3C validator |