![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad4ant23 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
Ref | Expression |
---|---|
ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad4ant23 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantr 479 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜒) |
3 | 2 | adantlll 716 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: fntpb 7228 suppssfv 8219 omsmolem 8689 ttukeylem5 10558 rlim3 15502 mp2pm2mplem4 22805 chfacfisf 22850 chfacfisfcpmat 22851 mbfi1fseqlem3 25741 usgredg2vlem2 29165 umgr3v3e3cycl 30120 zringfrac 33431 matunitlindflem1 37319 matunitlindflem2 37320 heicant 37358 naddgeoa 43079 difmap 44832 xlimmnfvlem2 45472 xlimpnfvlem2 45476 xlimliminflimsup 45501 sge0resplit 46045 hoidmvle 46239 grimcnv 47476 eenglngeehlnmlem2 48144 |
Copyright terms: Public domain | W3C validator |