| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad4ant23 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad4ant23 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantr 480 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜒) |
| 3 | 2 | adantlll 718 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fntpb 7138 suppssfv 8127 omsmolem 8567 ttukeylem5 10399 rlim3 15400 mp2pm2mplem4 22719 chfacfisf 22764 chfacfisfcpmat 22765 mbfi1fseqlem3 25640 usgredg2vlem2 29199 umgr3v3e3cycl 30156 zringfrac 33511 matunitlindflem1 37656 matunitlindflem2 37657 heicant 37695 naddgeoa 43427 difmap 45244 xlimmnfvlem2 45871 xlimpnfvlem2 45875 xlimliminflimsup 45900 sge0resplit 46444 hoidmvle 46638 grimcnv 47919 eenglngeehlnmlem2 48770 |
| Copyright terms: Public domain | W3C validator |