Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad4ant23 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
Ref | Expression |
---|---|
ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad4ant23 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantr 481 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜒) |
3 | 2 | adantlll 715 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: fntpb 7085 suppssfv 8018 omsmolem 8487 ttukeylem5 10269 rlim3 15207 mp2pm2mplem4 21958 chfacfisf 22003 chfacfisfcpmat 22004 mbfi1fseqlem3 24882 usgredg2vlem2 27593 umgr3v3e3cycl 28548 matunitlindflem1 35773 matunitlindflem2 35774 heicant 35812 difmap 42747 xlimmnfvlem2 43374 xlimpnfvlem2 43378 xlimliminflimsup 43403 sge0resplit 43944 hoidmvle 44138 eenglngeehlnmlem2 46084 |
Copyright terms: Public domain | W3C validator |