|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ad4ant23 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) | 
| Ref | Expression | 
|---|---|
| ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | 
| Ref | Expression | 
|---|---|
| ad4ant23 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantr 480 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜒) | 
| 3 | 2 | adantlll 718 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: fntpb 7230 suppssfv 8228 omsmolem 8696 ttukeylem5 10554 rlim3 15535 mp2pm2mplem4 22816 chfacfisf 22861 chfacfisfcpmat 22862 mbfi1fseqlem3 25753 usgredg2vlem2 29244 umgr3v3e3cycl 30204 zringfrac 33583 matunitlindflem1 37624 matunitlindflem2 37625 heicant 37663 naddgeoa 43412 difmap 45217 xlimmnfvlem2 45853 xlimpnfvlem2 45857 xlimliminflimsup 45882 sge0resplit 46426 hoidmvle 46620 grimcnv 47884 eenglngeehlnmlem2 48664 | 
| Copyright terms: Public domain | W3C validator |