MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad4ant23 Structured version   Visualization version   GIF version

Theorem ad4ant23 753
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad4ant23 ((((𝜃𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒)

Proof of Theorem ad4ant23
StepHypRef Expression
1 ad4ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantr 480 . 2 (((𝜑𝜓) ∧ 𝜏) → 𝜒)
32adantlll 718 1 ((((𝜃𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  fntpb  7145  suppssfv  8135  omsmolem  8575  ttukeylem5  10407  rlim3  15405  mp2pm2mplem4  22694  chfacfisf  22739  chfacfisfcpmat  22740  mbfi1fseqlem3  25616  usgredg2vlem2  29171  umgr3v3e3cycl  30128  zringfrac  33491  matunitlindflem1  37596  matunitlindflem2  37597  heicant  37635  naddgeoa  43367  difmap  45185  xlimmnfvlem2  45814  xlimpnfvlem2  45818  xlimliminflimsup  45843  sge0resplit  46387  hoidmvle  46581  grimcnv  47872  eenglngeehlnmlem2  48723
  Copyright terms: Public domain W3C validator