Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad4ant23 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
Ref | Expression |
---|---|
ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad4ant23 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantr 482 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜒) |
3 | 2 | adantlll 716 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: fntpb 7145 suppssfv 8092 omsmolem 8562 ttukeylem5 10374 rlim3 15306 mp2pm2mplem4 22063 chfacfisf 22108 chfacfisfcpmat 22109 mbfi1fseqlem3 24987 usgredg2vlem2 27881 umgr3v3e3cycl 28835 matunitlindflem1 35929 matunitlindflem2 35930 heicant 35968 difmap 43126 xlimmnfvlem2 43762 xlimpnfvlem2 43766 xlimliminflimsup 43791 sge0resplit 44333 hoidmvle 44527 eenglngeehlnmlem2 46502 |
Copyright terms: Public domain | W3C validator |