| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad4ant23 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
| Ref | Expression |
|---|---|
| ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| ad4ant23 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | adantr 480 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜒) |
| 3 | 2 | adantlll 718 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: fntpb 7145 suppssfv 8135 omsmolem 8575 ttukeylem5 10407 rlim3 15405 mp2pm2mplem4 22694 chfacfisf 22739 chfacfisfcpmat 22740 mbfi1fseqlem3 25616 usgredg2vlem2 29171 umgr3v3e3cycl 30128 zringfrac 33491 matunitlindflem1 37596 matunitlindflem2 37597 heicant 37635 naddgeoa 43367 difmap 45185 xlimmnfvlem2 45814 xlimpnfvlem2 45818 xlimliminflimsup 45843 sge0resplit 46387 hoidmvle 46581 grimcnv 47872 eenglngeehlnmlem2 48723 |
| Copyright terms: Public domain | W3C validator |