MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad4ant23 Structured version   Visualization version   GIF version

Theorem ad4ant23 750
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad4ant23 ((((𝜃𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒)

Proof of Theorem ad4ant23
StepHypRef Expression
1 ad4ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantr 481 . 2 (((𝜑𝜓) ∧ 𝜏) → 𝜒)
32adantlll 715 1 ((((𝜃𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  fntpb  7085  suppssfv  8018  omsmolem  8487  ttukeylem5  10269  rlim3  15207  mp2pm2mplem4  21958  chfacfisf  22003  chfacfisfcpmat  22004  mbfi1fseqlem3  24882  usgredg2vlem2  27593  umgr3v3e3cycl  28548  matunitlindflem1  35773  matunitlindflem2  35774  heicant  35812  difmap  42747  xlimmnfvlem2  43374  xlimpnfvlem2  43378  xlimliminflimsup  43403  sge0resplit  43944  hoidmvle  44138  eenglngeehlnmlem2  46084
  Copyright terms: Public domain W3C validator