MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad4ant23 Structured version   Visualization version   GIF version

Theorem ad4ant23 752
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad4ant23 ((((𝜃𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒)

Proof of Theorem ad4ant23
StepHypRef Expression
1 ad4ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantr 480 . 2 (((𝜑𝜓) ∧ 𝜏) → 𝜒)
32adantlll 717 1 ((((𝜃𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  fntpb  7246  suppssfv  8243  omsmolem  8713  ttukeylem5  10582  rlim3  15544  mp2pm2mplem4  22836  chfacfisf  22881  chfacfisfcpmat  22882  mbfi1fseqlem3  25772  usgredg2vlem2  29261  umgr3v3e3cycl  30216  zringfrac  33547  matunitlindflem1  37576  matunitlindflem2  37577  heicant  37615  naddgeoa  43356  difmap  45114  xlimmnfvlem2  45754  xlimpnfvlem2  45758  xlimliminflimsup  45783  sge0resplit  46327  hoidmvle  46521  grimcnv  47763  eenglngeehlnmlem2  48472
  Copyright terms: Public domain W3C validator