Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ad4ant23 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
Ref | Expression |
---|---|
ad4ant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
ad4ant23 | ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad4ant2.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | adantr 480 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜏) → 𝜒) |
3 | 2 | adantlll 714 | 1 ⊢ ((((𝜃 ∧ 𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: fntpb 7067 suppssfv 7989 omsmolem 8447 ttukeylem5 10200 rlim3 15135 mp2pm2mplem4 21866 chfacfisf 21911 chfacfisfcpmat 21912 mbfi1fseqlem3 24787 usgredg2vlem2 27496 umgr3v3e3cycl 28449 matunitlindflem1 35700 matunitlindflem2 35701 heicant 35739 difmap 42636 xlimmnfvlem2 43264 xlimpnfvlem2 43268 xlimliminflimsup 43293 sge0resplit 43834 hoidmvle 44028 eenglngeehlnmlem2 45972 |
Copyright terms: Public domain | W3C validator |