MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ad4ant23 Structured version   Visualization version   GIF version

Theorem ad4ant23 753
Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.)
Hypothesis
Ref Expression
ad4ant2.1 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
ad4ant23 ((((𝜃𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒)

Proof of Theorem ad4ant23
StepHypRef Expression
1 ad4ant2.1 . . 3 ((𝜑𝜓) → 𝜒)
21adantr 484 . 2 (((𝜑𝜓) ∧ 𝜏) → 𝜒)
32adantlll 718 1 ((((𝜃𝜑) ∧ 𝜓) ∧ 𝜏) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by:  fntpb  7025  suppssfv  7944  omsmolem  8382  ttukeylem5  10127  rlim3  15059  mp2pm2mplem4  21706  chfacfisf  21751  chfacfisfcpmat  21752  mbfi1fseqlem3  24615  usgredg2vlem2  27314  umgr3v3e3cycl  28267  matunitlindflem1  35510  matunitlindflem2  35511  heicant  35549  difmap  42420  xlimmnfvlem2  43049  xlimpnfvlem2  43053  xlimliminflimsup  43078  sge0resplit  43619  hoidmvle  43813  eenglngeehlnmlem2  45757
  Copyright terms: Public domain W3C validator