Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difmap Structured version   Visualization version   GIF version

Theorem difmap 41459
Description: Difference of two sets exponentiations. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
difmap.a (𝜑𝐴𝑉)
difmap.b (𝜑𝐵𝑊)
difmap.v (𝜑𝐶𝑍)
difmap.n (𝜑𝐶 ≠ ∅)
Assertion
Ref Expression
difmap (𝜑 → ((𝐴𝐵) ↑m 𝐶) ⊆ ((𝐴m 𝐶) ∖ (𝐵m 𝐶)))

Proof of Theorem difmap
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difmap.a . . . . . . 7 (𝜑𝐴𝑉)
2 difssd 4107 . . . . . . 7 (𝜑 → (𝐴𝐵) ⊆ 𝐴)
3 mapss 8445 . . . . . . 7 ((𝐴𝑉 ∧ (𝐴𝐵) ⊆ 𝐴) → ((𝐴𝐵) ↑m 𝐶) ⊆ (𝐴m 𝐶))
41, 2, 3syl2anc 586 . . . . . 6 (𝜑 → ((𝐴𝐵) ↑m 𝐶) ⊆ (𝐴m 𝐶))
54adantr 483 . . . . 5 ((𝜑𝑓 ∈ ((𝐴𝐵) ↑m 𝐶)) → ((𝐴𝐵) ↑m 𝐶) ⊆ (𝐴m 𝐶))
6 simpr 487 . . . . 5 ((𝜑𝑓 ∈ ((𝐴𝐵) ↑m 𝐶)) → 𝑓 ∈ ((𝐴𝐵) ↑m 𝐶))
75, 6sseldd 3966 . . . 4 ((𝜑𝑓 ∈ ((𝐴𝐵) ↑m 𝐶)) → 𝑓 ∈ (𝐴m 𝐶))
8 difmap.n . . . . . . . 8 (𝜑𝐶 ≠ ∅)
9 n0 4308 . . . . . . . 8 (𝐶 ≠ ∅ ↔ ∃𝑥 𝑥𝐶)
108, 9sylib 220 . . . . . . 7 (𝜑 → ∃𝑥 𝑥𝐶)
1110adantr 483 . . . . . 6 ((𝜑𝑓 ∈ ((𝐴𝐵) ↑m 𝐶)) → ∃𝑥 𝑥𝐶)
12 simpr 487 . . . . . . . . . . 11 ((𝑥𝐶𝑓:𝐶𝐵) → 𝑓:𝐶𝐵)
13 simpl 485 . . . . . . . . . . 11 ((𝑥𝐶𝑓:𝐶𝐵) → 𝑥𝐶)
1412, 13ffvelrnd 6845 . . . . . . . . . 10 ((𝑥𝐶𝑓:𝐶𝐵) → (𝑓𝑥) ∈ 𝐵)
1514adantll 712 . . . . . . . . 9 ((((𝜑𝑓 ∈ ((𝐴𝐵) ↑m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑓:𝐶𝐵) → (𝑓𝑥) ∈ 𝐵)
16 elmapi 8420 . . . . . . . . . . . . 13 (𝑓 ∈ ((𝐴𝐵) ↑m 𝐶) → 𝑓:𝐶⟶(𝐴𝐵))
1716adantr 483 . . . . . . . . . . . 12 ((𝑓 ∈ ((𝐴𝐵) ↑m 𝐶) ∧ 𝑥𝐶) → 𝑓:𝐶⟶(𝐴𝐵))
18 simpr 487 . . . . . . . . . . . 12 ((𝑓 ∈ ((𝐴𝐵) ↑m 𝐶) ∧ 𝑥𝐶) → 𝑥𝐶)
1917, 18ffvelrnd 6845 . . . . . . . . . . 11 ((𝑓 ∈ ((𝐴𝐵) ↑m 𝐶) ∧ 𝑥𝐶) → (𝑓𝑥) ∈ (𝐴𝐵))
20 eldifn 4102 . . . . . . . . . . 11 ((𝑓𝑥) ∈ (𝐴𝐵) → ¬ (𝑓𝑥) ∈ 𝐵)
2119, 20syl 17 . . . . . . . . . 10 ((𝑓 ∈ ((𝐴𝐵) ↑m 𝐶) ∧ 𝑥𝐶) → ¬ (𝑓𝑥) ∈ 𝐵)
2221ad4ant23 751 . . . . . . . . 9 ((((𝜑𝑓 ∈ ((𝐴𝐵) ↑m 𝐶)) ∧ 𝑥𝐶) ∧ 𝑓:𝐶𝐵) → ¬ (𝑓𝑥) ∈ 𝐵)
2315, 22pm2.65da 815 . . . . . . . 8 (((𝜑𝑓 ∈ ((𝐴𝐵) ↑m 𝐶)) ∧ 𝑥𝐶) → ¬ 𝑓:𝐶𝐵)
2423ex 415 . . . . . . 7 ((𝜑𝑓 ∈ ((𝐴𝐵) ↑m 𝐶)) → (𝑥𝐶 → ¬ 𝑓:𝐶𝐵))
2524exlimdv 1927 . . . . . 6 ((𝜑𝑓 ∈ ((𝐴𝐵) ↑m 𝐶)) → (∃𝑥 𝑥𝐶 → ¬ 𝑓:𝐶𝐵))
2611, 25mpd 15 . . . . 5 ((𝜑𝑓 ∈ ((𝐴𝐵) ↑m 𝐶)) → ¬ 𝑓:𝐶𝐵)
27 difmap.b . . . . . . 7 (𝜑𝐵𝑊)
28 difmap.v . . . . . . 7 (𝜑𝐶𝑍)
29 elmapg 8411 . . . . . . 7 ((𝐵𝑊𝐶𝑍) → (𝑓 ∈ (𝐵m 𝐶) ↔ 𝑓:𝐶𝐵))
3027, 28, 29syl2anc 586 . . . . . 6 (𝜑 → (𝑓 ∈ (𝐵m 𝐶) ↔ 𝑓:𝐶𝐵))
3130adantr 483 . . . . 5 ((𝜑𝑓 ∈ ((𝐴𝐵) ↑m 𝐶)) → (𝑓 ∈ (𝐵m 𝐶) ↔ 𝑓:𝐶𝐵))
3226, 31mtbird 327 . . . 4 ((𝜑𝑓 ∈ ((𝐴𝐵) ↑m 𝐶)) → ¬ 𝑓 ∈ (𝐵m 𝐶))
337, 32eldifd 3945 . . 3 ((𝜑𝑓 ∈ ((𝐴𝐵) ↑m 𝐶)) → 𝑓 ∈ ((𝐴m 𝐶) ∖ (𝐵m 𝐶)))
3433ralrimiva 3180 . 2 (𝜑 → ∀𝑓 ∈ ((𝐴𝐵) ↑m 𝐶)𝑓 ∈ ((𝐴m 𝐶) ∖ (𝐵m 𝐶)))
35 dfss3 3954 . 2 (((𝐴𝐵) ↑m 𝐶) ⊆ ((𝐴m 𝐶) ∖ (𝐵m 𝐶)) ↔ ∀𝑓 ∈ ((𝐴𝐵) ↑m 𝐶)𝑓 ∈ ((𝐴m 𝐶) ∖ (𝐵m 𝐶)))
3634, 35sylibr 236 1 (𝜑 → ((𝐴𝐵) ↑m 𝐶) ⊆ ((𝐴m 𝐶) ∖ (𝐵m 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wex 1773  wcel 2107  wne 3014  wral 3136  cdif 3931  wss 3934  c0 4289  wf 6344  cfv 6348  (class class class)co 7148  m cmap 8398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-map 8400
This theorem is referenced by:  difmapsn  41464
  Copyright terms: Public domain W3C validator