MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgredg2vlem2 Structured version   Visualization version   GIF version

Theorem usgredg2vlem2 29258
Description: Lemma 2 for usgredg2v 29259. (Contributed by Alexander van der Vekens, 4-Jan-2018.) (Revised by AV, 18-Oct-2020.)
Hypotheses
Ref Expression
usgredg2v.v 𝑉 = (Vtx‘𝐺)
usgredg2v.e 𝐸 = (iEdg‘𝐺)
usgredg2v.a 𝐴 = {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}
Assertion
Ref Expression
usgredg2vlem2 ((𝐺 ∈ USGraph ∧ 𝑌𝐴) → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁}))
Distinct variable groups:   𝑥,𝐸,𝑧   𝑧,𝐺   𝑥,𝑁,𝑧   𝑧,𝑉   𝑥,𝑌,𝑧   𝑧,𝐼
Allowed substitution hints:   𝐴(𝑥,𝑧)   𝐺(𝑥)   𝐼(𝑥)   𝑉(𝑥)

Proof of Theorem usgredg2vlem2
StepHypRef Expression
1 fveq2 6907 . . . . . 6 (𝑥 = 𝑌 → (𝐸𝑥) = (𝐸𝑌))
21eleq2d 2825 . . . . 5 (𝑥 = 𝑌 → (𝑁 ∈ (𝐸𝑥) ↔ 𝑁 ∈ (𝐸𝑌)))
3 usgredg2v.a . . . . 5 𝐴 = {𝑥 ∈ dom 𝐸𝑁 ∈ (𝐸𝑥)}
42, 3elrab2 3698 . . . 4 (𝑌𝐴 ↔ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))
54biimpi 216 . . 3 (𝑌𝐴 → (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))
6 usgredg2v.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
7 usgredg2v.e . . . . . . . 8 𝐸 = (iEdg‘𝐺)
86, 7usgredgreu 29250 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)) → ∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧})
983expb 1119 . . . . . 6 ((𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌))) → ∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧})
106, 7, 3usgredg2vlem1 29257 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ 𝑌𝐴) → (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) ∈ 𝑉)
1110adantlr 715 . . . . . . . . . . . . . 14 (((𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌))) ∧ 𝑌𝐴) → (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) ∈ 𝑉)
1211ad4ant23 753 . . . . . . . . . . . . 13 ((((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) ∧ 𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})) → (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) ∈ 𝑉)
13 eleq1 2827 . . . . . . . . . . . . . 14 (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐼𝑉 ↔ (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) ∈ 𝑉))
1413adantl 481 . . . . . . . . . . . . 13 ((((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) ∧ 𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})) → (𝐼𝑉 ↔ (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) ∈ 𝑉))
1512, 14mpbird 257 . . . . . . . . . . . 12 ((((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) ∧ 𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})) → 𝐼𝑉)
16 prcom 4737 . . . . . . . . . . . . . . . 16 {𝑁, 𝑧} = {𝑧, 𝑁}
1716eqeq2i 2748 . . . . . . . . . . . . . . 15 ((𝐸𝑌) = {𝑁, 𝑧} ↔ (𝐸𝑌) = {𝑧, 𝑁})
1817reubii 3387 . . . . . . . . . . . . . 14 (∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ↔ ∃!𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})
1918biimpi 216 . . . . . . . . . . . . 13 (∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} → ∃!𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})
2019ad3antrrr 730 . . . . . . . . . . . 12 ((((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) ∧ 𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})) → ∃!𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})
21 preq1 4738 . . . . . . . . . . . . . 14 (𝑧 = 𝐼 → {𝑧, 𝑁} = {𝐼, 𝑁})
2221eqeq2d 2746 . . . . . . . . . . . . 13 (𝑧 = 𝐼 → ((𝐸𝑌) = {𝑧, 𝑁} ↔ (𝐸𝑌) = {𝐼, 𝑁}))
2322riota2 7413 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ ∃!𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → ((𝐸𝑌) = {𝐼, 𝑁} ↔ (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) = 𝐼))
2415, 20, 23syl2anc 584 . . . . . . . . . . 11 ((((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) ∧ 𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁})) → ((𝐸𝑌) = {𝐼, 𝑁} ↔ (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) = 𝐼))
2524exbiri 811 . . . . . . . . . 10 (((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → ((𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) = 𝐼 → (𝐸𝑌) = {𝐼, 𝑁})))
2625com13 88 . . . . . . . . 9 ((𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) = 𝐼 → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) → (𝐸𝑌) = {𝐼, 𝑁})))
2726eqcoms 2743 . . . . . . . 8 (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) → (𝐸𝑌) = {𝐼, 𝑁})))
2827pm2.43i 52 . . . . . . 7 (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) ∧ 𝑌𝐴) → (𝐸𝑌) = {𝐼, 𝑁}))
2928expdcom 414 . . . . . 6 ((∃!𝑧𝑉 (𝐸𝑌) = {𝑁, 𝑧} ∧ (𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)))) → (𝑌𝐴 → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁})))
309, 29mpancom 688 . . . . 5 ((𝐺 ∈ USGraph ∧ (𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌))) → (𝑌𝐴 → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁})))
3130expcom 413 . . . 4 ((𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)) → (𝐺 ∈ USGraph → (𝑌𝐴 → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁}))))
3231com23 86 . . 3 ((𝑌 ∈ dom 𝐸𝑁 ∈ (𝐸𝑌)) → (𝑌𝐴 → (𝐺 ∈ USGraph → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁}))))
335, 32mpcom 38 . 2 (𝑌𝐴 → (𝐺 ∈ USGraph → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁})))
3433impcom 407 1 ((𝐺 ∈ USGraph ∧ 𝑌𝐴) → (𝐼 = (𝑧𝑉 (𝐸𝑌) = {𝑧, 𝑁}) → (𝐸𝑌) = {𝐼, 𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  ∃!wreu 3376  {crab 3433  {cpr 4633  dom cdm 5689  cfv 6563  crio 7387  Vtxcvtx 29028  iEdgciedg 29029  USGraphcusgr 29181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367  df-edg 29080  df-umgr 29115  df-usgr 29183
This theorem is referenced by:  usgredg2v  29259
  Copyright terms: Public domain W3C validator