| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantlll | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 2-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantlll | ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜑) → 𝜑) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl1 680 | 1 ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad4ant23 753 ad4ant24 754 ad4ant234 1176 fiunlem 7920 sbthlem8 9058 caucvgb 15646 metustto 24441 grpoidinvlem3 30435 nmoub3i 30702 riesz3i 31991 csmdsymi 32263 finxpreclem3 37381 fin2so 37601 matunitlindflem1 37610 mblfinlem2 37652 mblfinlem3 37653 ismblfin 37655 itg2addnclem 37665 ftc1anclem7 37693 ftc1anc 37695 fzmul 37735 fdc 37739 incsequz2 37743 isbnd3 37778 bndss 37780 ismtyres 37802 rngoisocnv 37975 xralrple2 45350 xralrple3 45370 cvgcaule 45487 limsupmnflem 45718 climrescn 45746 xlimliminflimsup 45860 dirkertrigeq 46099 fourierdlem12 46117 fourierdlem50 46154 fourierdlem103 46207 fourierdlem104 46208 etransclem35 46267 sge0iunmptlemfi 46411 iundjiun 46458 meaiininclem 46484 hoidmvle 46598 ovnhoilem2 46600 smflimlem1 46769 smfrec 46787 smfliminflem 46828 |
| Copyright terms: Public domain | W3C validator |