![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantlll | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 2-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlll | ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 ⊢ ((𝜏 ∧ 𝜑) → 𝜑) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl1 678 | 1 ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: ad4ant23 751 ad4ant24 752 ad4ant234 1175 fiunlem 7924 sbthlem8 9086 caucvgb 15622 metustto 24053 grpoidinvlem3 29746 nmoub3i 30013 riesz3i 31302 csmdsymi 31574 finxpreclem3 36262 fin2so 36463 matunitlindflem1 36472 mblfinlem2 36514 mblfinlem3 36515 ismblfin 36517 itg2addnclem 36527 ftc1anclem7 36555 ftc1anc 36557 fzmul 36597 fdc 36601 incsequz2 36605 isbnd3 36640 bndss 36642 ismtyres 36664 rngoisocnv 36837 xralrple2 44050 xralrple3 44070 cvgcaule 44188 limsupmnflem 44422 climrescn 44450 xlimliminflimsup 44564 dirkertrigeq 44803 fourierdlem12 44821 fourierdlem50 44858 fourierdlem103 44911 fourierdlem104 44912 etransclem35 44971 sge0iunmptlemfi 45115 iundjiun 45162 meaiininclem 45188 hoidmvle 45302 ovnhoilem2 45304 smflimlem1 45473 smfrec 45491 smfliminflem 45532 |
Copyright terms: Public domain | W3C validator |