![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantlll | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 2-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlll | ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜑) → 𝜑) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl1 680 | 1 ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: ad4ant23 753 ad4ant24 754 ad4ant234 1174 fiunlem 7964 sbthlem8 9128 caucvgb 15712 metustto 24581 grpoidinvlem3 30534 nmoub3i 30801 riesz3i 32090 csmdsymi 32362 finxpreclem3 37375 fin2so 37593 matunitlindflem1 37602 mblfinlem2 37644 mblfinlem3 37645 ismblfin 37647 itg2addnclem 37657 ftc1anclem7 37685 ftc1anc 37687 fzmul 37727 fdc 37731 incsequz2 37735 isbnd3 37770 bndss 37772 ismtyres 37794 rngoisocnv 37967 xralrple2 45303 xralrple3 45323 cvgcaule 45441 limsupmnflem 45675 climrescn 45703 xlimliminflimsup 45817 dirkertrigeq 46056 fourierdlem12 46074 fourierdlem50 46111 fourierdlem103 46164 fourierdlem104 46165 etransclem35 46224 sge0iunmptlemfi 46368 iundjiun 46415 meaiininclem 46441 hoidmvle 46555 ovnhoilem2 46557 smflimlem1 46726 smfrec 46744 smfliminflem 46785 |
Copyright terms: Public domain | W3C validator |