| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantlll | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 2-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantlll | ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜑) → 𝜑) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl1 680 | 1 ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad4ant23 753 ad4ant24 754 ad4ant234 1176 fiunlem 7877 sbthlem8 9011 caucvgb 15587 metustto 24439 grpoidinvlem3 30450 nmoub3i 30717 riesz3i 32006 csmdsymi 32278 finxpreclem3 37367 fin2so 37587 matunitlindflem1 37596 mblfinlem2 37638 mblfinlem3 37639 ismblfin 37641 itg2addnclem 37651 ftc1anclem7 37679 ftc1anc 37681 fzmul 37721 fdc 37725 incsequz2 37729 isbnd3 37764 bndss 37766 ismtyres 37788 rngoisocnv 37961 xralrple2 45334 xralrple3 45353 cvgcaule 45470 limsupmnflem 45701 climrescn 45729 xlimliminflimsup 45843 dirkertrigeq 46082 fourierdlem12 46100 fourierdlem50 46137 fourierdlem103 46190 fourierdlem104 46191 etransclem35 46250 sge0iunmptlemfi 46394 iundjiun 46441 meaiininclem 46467 hoidmvle 46581 ovnhoilem2 46583 smflimlem1 46752 smfrec 46770 smfliminflem 46811 |
| Copyright terms: Public domain | W3C validator |