![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantlll | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 2-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlll | ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 ⊢ ((𝜏 ∧ 𝜑) → 𝜑) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl1 676 | 1 ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 |
This theorem is referenced by: ad4ant23 749 ad4ant24 750 ad4ant234 1168 fiunlem 7506 sbthlem8 8488 caucvgb 14874 metustto 22850 grpoidinvlem3 27970 nmoub3i 28237 riesz3i 29526 csmdsymi 29798 finxpreclem3 34226 fin2so 34431 matunitlindflem1 34440 mblfinlem2 34482 mblfinlem3 34483 ismblfin 34485 itg2addnclem 34495 ftc1anclem7 34525 ftc1anc 34527 fzmul 34569 fdc 34573 incsequz2 34577 isbnd3 34615 bndss 34617 ismtyres 34639 rngoisocnv 34812 xralrple2 41184 xralrple3 41204 limsupmnflem 41564 climrescn 41592 xlimliminflimsup 41706 dirkertrigeq 41950 fourierdlem12 41968 fourierdlem50 42005 fourierdlem103 42058 fourierdlem104 42059 etransclem35 42118 sge0iunmptlemfi 42259 iundjiun 42306 meaiininclem 42332 hoidmvle 42446 ovnhoilem2 42448 smflimlem1 42611 smfrec 42628 smfliminflem 42668 |
Copyright terms: Public domain | W3C validator |