Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > adantlll | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 2-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlll | ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜑) → 𝜑) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl1 676 | 1 ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ad4ant23 749 ad4ant24 750 ad4ant234 1173 fiunlem 7758 sbthlem8 8830 caucvgb 15319 metustto 23615 grpoidinvlem3 28769 nmoub3i 29036 riesz3i 30325 csmdsymi 30597 finxpreclem3 35491 fin2so 35691 matunitlindflem1 35700 mblfinlem2 35742 mblfinlem3 35743 ismblfin 35745 itg2addnclem 35755 ftc1anclem7 35783 ftc1anc 35785 fzmul 35826 fdc 35830 incsequz2 35834 isbnd3 35869 bndss 35871 ismtyres 35893 rngoisocnv 36066 xralrple2 42783 xralrple3 42803 limsupmnflem 43151 climrescn 43179 xlimliminflimsup 43293 dirkertrigeq 43532 fourierdlem12 43550 fourierdlem50 43587 fourierdlem103 43640 fourierdlem104 43641 etransclem35 43700 sge0iunmptlemfi 43841 iundjiun 43888 meaiininclem 43914 hoidmvle 44028 ovnhoilem2 44030 smflimlem1 44193 smfrec 44210 smfliminflem 44250 |
Copyright terms: Public domain | W3C validator |