| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantlll | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 2-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantlll | ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜑) → 𝜑) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl1 680 | 1 ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad4ant23 753 ad4ant24 754 ad4ant234 1176 fiunlem 7923 sbthlem8 9064 caucvgb 15653 metustto 24448 grpoidinvlem3 30442 nmoub3i 30709 riesz3i 31998 csmdsymi 32270 finxpreclem3 37388 fin2so 37608 matunitlindflem1 37617 mblfinlem2 37659 mblfinlem3 37660 ismblfin 37662 itg2addnclem 37672 ftc1anclem7 37700 ftc1anc 37702 fzmul 37742 fdc 37746 incsequz2 37750 isbnd3 37785 bndss 37787 ismtyres 37809 rngoisocnv 37982 xralrple2 45357 xralrple3 45377 cvgcaule 45494 limsupmnflem 45725 climrescn 45753 xlimliminflimsup 45867 dirkertrigeq 46106 fourierdlem12 46124 fourierdlem50 46161 fourierdlem103 46214 fourierdlem104 46215 etransclem35 46274 sge0iunmptlemfi 46418 iundjiun 46465 meaiininclem 46491 hoidmvle 46605 ovnhoilem2 46607 smflimlem1 46776 smfrec 46794 smfliminflem 46835 |
| Copyright terms: Public domain | W3C validator |