| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantlll | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 2-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantlll | ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜑) → 𝜑) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl1 680 | 1 ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad4ant23 753 ad4ant24 754 ad4ant234 1176 fiunlem 7900 sbthlem8 9035 caucvgb 15622 metustto 24417 grpoidinvlem3 30408 nmoub3i 30675 riesz3i 31964 csmdsymi 32236 finxpreclem3 37354 fin2so 37574 matunitlindflem1 37583 mblfinlem2 37625 mblfinlem3 37626 ismblfin 37628 itg2addnclem 37638 ftc1anclem7 37666 ftc1anc 37668 fzmul 37708 fdc 37712 incsequz2 37716 isbnd3 37751 bndss 37753 ismtyres 37775 rngoisocnv 37948 xralrple2 45323 xralrple3 45343 cvgcaule 45460 limsupmnflem 45691 climrescn 45719 xlimliminflimsup 45833 dirkertrigeq 46072 fourierdlem12 46090 fourierdlem50 46127 fourierdlem103 46180 fourierdlem104 46181 etransclem35 46240 sge0iunmptlemfi 46384 iundjiun 46431 meaiininclem 46457 hoidmvle 46571 ovnhoilem2 46573 smflimlem1 46742 smfrec 46760 smfliminflem 46801 |
| Copyright terms: Public domain | W3C validator |