Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > adantlll | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 2-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlll | ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 ⊢ ((𝜏 ∧ 𝜑) → 𝜑) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl1 677 | 1 ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: ad4ant23 750 ad4ant24 751 ad4ant234 1174 fiunlem 7793 sbthlem8 8886 caucvgb 15400 metustto 23718 grpoidinvlem3 28877 nmoub3i 29144 riesz3i 30433 csmdsymi 30705 finxpreclem3 35573 fin2so 35773 matunitlindflem1 35782 mblfinlem2 35824 mblfinlem3 35825 ismblfin 35827 itg2addnclem 35837 ftc1anclem7 35865 ftc1anc 35867 fzmul 35908 fdc 35912 incsequz2 35916 isbnd3 35951 bndss 35953 ismtyres 35975 rngoisocnv 36148 xralrple2 42900 xralrple3 42920 limsupmnflem 43268 climrescn 43296 xlimliminflimsup 43410 dirkertrigeq 43649 fourierdlem12 43667 fourierdlem50 43704 fourierdlem103 43757 fourierdlem104 43758 etransclem35 43817 sge0iunmptlemfi 43958 iundjiun 44005 meaiininclem 44031 hoidmvle 44145 ovnhoilem2 44147 smflimlem1 44316 smfrec 44334 smfliminflem 44374 |
Copyright terms: Public domain | W3C validator |