| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantlll | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 2-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantlll | ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜑) → 𝜑) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl1 680 | 1 ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad4ant23 753 ad4ant24 754 ad4ant234 1176 fiunlem 7869 sbthlem8 9002 caucvgb 15582 metustto 24463 grpoidinvlem3 30478 nmoub3i 30745 riesz3i 32034 csmdsymi 32306 finxpreclem3 37427 fin2so 37647 matunitlindflem1 37656 mblfinlem2 37698 mblfinlem3 37699 ismblfin 37701 itg2addnclem 37711 ftc1anclem7 37739 ftc1anc 37741 fzmul 37781 fdc 37785 incsequz2 37789 isbnd3 37824 bndss 37826 ismtyres 37848 rngoisocnv 38021 xralrple2 45393 xralrple3 45412 cvgcaule 45529 limsupmnflem 45758 climrescn 45786 xlimliminflimsup 45900 dirkertrigeq 46139 fourierdlem12 46157 fourierdlem50 46194 fourierdlem103 46247 fourierdlem104 46248 etransclem35 46307 sge0iunmptlemfi 46451 iundjiun 46498 meaiininclem 46524 hoidmvle 46638 ovnhoilem2 46640 smflimlem1 46809 smfrec 46827 smfliminflem 46868 |
| Copyright terms: Public domain | W3C validator |