![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantlll | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 2-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlll | ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 ⊢ ((𝜏 ∧ 𝜑) → 𝜑) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl1 678 | 1 ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: ad4ant23 751 ad4ant24 752 ad4ant234 1175 fiunlem 7930 sbthlem8 9092 caucvgb 15628 metustto 24069 grpoidinvlem3 29797 nmoub3i 30064 riesz3i 31353 csmdsymi 31625 finxpreclem3 36360 fin2so 36561 matunitlindflem1 36570 mblfinlem2 36612 mblfinlem3 36613 ismblfin 36615 itg2addnclem 36625 ftc1anclem7 36653 ftc1anc 36655 fzmul 36695 fdc 36699 incsequz2 36703 isbnd3 36738 bndss 36740 ismtyres 36762 rngoisocnv 36935 xralrple2 44143 xralrple3 44163 cvgcaule 44281 limsupmnflem 44515 climrescn 44543 xlimliminflimsup 44657 dirkertrigeq 44896 fourierdlem12 44914 fourierdlem50 44951 fourierdlem103 45004 fourierdlem104 45005 etransclem35 45064 sge0iunmptlemfi 45208 iundjiun 45255 meaiininclem 45281 hoidmvle 45395 ovnhoilem2 45397 smflimlem1 45566 smfrec 45584 smfliminflem 45625 |
Copyright terms: Public domain | W3C validator |