| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adantlll | Structured version Visualization version GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 2-Dec-2012.) |
| Ref | Expression |
|---|---|
| adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| adantlll | ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜑) → 𝜑) | |
| 2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | sylanl1 680 | 1 ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ad4ant23 753 ad4ant24 754 ad4ant234 1176 fiunlem 7940 sbthlem8 9104 caucvgb 15696 metustto 24492 grpoidinvlem3 30487 nmoub3i 30754 riesz3i 32043 csmdsymi 32315 finxpreclem3 37411 fin2so 37631 matunitlindflem1 37640 mblfinlem2 37682 mblfinlem3 37683 ismblfin 37685 itg2addnclem 37695 ftc1anclem7 37723 ftc1anc 37725 fzmul 37765 fdc 37769 incsequz2 37773 isbnd3 37808 bndss 37810 ismtyres 37832 rngoisocnv 38005 xralrple2 45381 xralrple3 45401 cvgcaule 45518 limsupmnflem 45749 climrescn 45777 xlimliminflimsup 45891 dirkertrigeq 46130 fourierdlem12 46148 fourierdlem50 46185 fourierdlem103 46238 fourierdlem104 46239 etransclem35 46298 sge0iunmptlemfi 46442 iundjiun 46489 meaiininclem 46515 hoidmvle 46629 ovnhoilem2 46631 smflimlem1 46800 smfrec 46818 smfliminflem 46859 |
| Copyright terms: Public domain | W3C validator |