![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantlll | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 2-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlll | ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜑) → 𝜑) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl1 679 | 1 ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: ad4ant23 752 ad4ant24 753 ad4ant234 1175 fiunlem 7982 sbthlem8 9156 caucvgb 15728 metustto 24587 grpoidinvlem3 30538 nmoub3i 30805 riesz3i 32094 csmdsymi 32366 finxpreclem3 37359 fin2so 37567 matunitlindflem1 37576 mblfinlem2 37618 mblfinlem3 37619 ismblfin 37621 itg2addnclem 37631 ftc1anclem7 37659 ftc1anc 37661 fzmul 37701 fdc 37705 incsequz2 37709 isbnd3 37744 bndss 37746 ismtyres 37768 rngoisocnv 37941 xralrple2 45269 xralrple3 45289 cvgcaule 45407 limsupmnflem 45641 climrescn 45669 xlimliminflimsup 45783 dirkertrigeq 46022 fourierdlem12 46040 fourierdlem50 46077 fourierdlem103 46130 fourierdlem104 46131 etransclem35 46190 sge0iunmptlemfi 46334 iundjiun 46381 meaiininclem 46407 hoidmvle 46521 ovnhoilem2 46523 smflimlem1 46692 smfrec 46710 smfliminflem 46751 |
Copyright terms: Public domain | W3C validator |