![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adantlll | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 2-Dec-2012.) |
Ref | Expression |
---|---|
adantl2.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
adantlll | ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . 2 ⊢ ((𝜏 ∧ 𝜑) → 𝜑) | |
2 | adantl2.1 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | sylanl1 679 | 1 ⊢ ((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: ad4ant23 752 ad4ant24 753 ad4ant234 1176 fiunlem 7928 sbthlem8 9090 caucvgb 15626 metustto 24062 grpoidinvlem3 29759 nmoub3i 30026 riesz3i 31315 csmdsymi 31587 finxpreclem3 36274 fin2so 36475 matunitlindflem1 36484 mblfinlem2 36526 mblfinlem3 36527 ismblfin 36529 itg2addnclem 36539 ftc1anclem7 36567 ftc1anc 36569 fzmul 36609 fdc 36613 incsequz2 36617 isbnd3 36652 bndss 36654 ismtyres 36676 rngoisocnv 36849 xralrple2 44064 xralrple3 44084 cvgcaule 44202 limsupmnflem 44436 climrescn 44464 xlimliminflimsup 44578 dirkertrigeq 44817 fourierdlem12 44835 fourierdlem50 44872 fourierdlem103 44925 fourierdlem104 44926 etransclem35 44985 sge0iunmptlemfi 45129 iundjiun 45176 meaiininclem 45202 hoidmvle 45316 ovnhoilem2 45318 smflimlem1 45487 smfrec 45505 smfliminflem 45546 |
Copyright terms: Public domain | W3C validator |