Step | Hyp | Ref
| Expression |
1 | | oveq1 7415 |
. . 3
⊢ (𝑎 = 𝑐 → (𝑎 +o 𝑏) = (𝑐 +o 𝑏)) |
2 | | oveq1 7415 |
. . 3
⊢ (𝑎 = 𝑐 → (𝑎 +no 𝑏) = (𝑐 +no 𝑏)) |
3 | 1, 2 | sseq12d 4015 |
. 2
⊢ (𝑎 = 𝑐 → ((𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏) ↔ (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏))) |
4 | | oveq2 7416 |
. . 3
⊢ (𝑏 = 𝑑 → (𝑐 +o 𝑏) = (𝑐 +o 𝑑)) |
5 | | oveq2 7416 |
. . 3
⊢ (𝑏 = 𝑑 → (𝑐 +no 𝑏) = (𝑐 +no 𝑑)) |
6 | 4, 5 | sseq12d 4015 |
. 2
⊢ (𝑏 = 𝑑 → ((𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ↔ (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑))) |
7 | | oveq1 7415 |
. . 3
⊢ (𝑎 = 𝑐 → (𝑎 +o 𝑑) = (𝑐 +o 𝑑)) |
8 | | oveq1 7415 |
. . 3
⊢ (𝑎 = 𝑐 → (𝑎 +no 𝑑) = (𝑐 +no 𝑑)) |
9 | 7, 8 | sseq12d 4015 |
. 2
⊢ (𝑎 = 𝑐 → ((𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑) ↔ (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑))) |
10 | | oveq1 7415 |
. . 3
⊢ (𝑎 = 𝐴 → (𝑎 +o 𝑏) = (𝐴 +o 𝑏)) |
11 | | oveq1 7415 |
. . 3
⊢ (𝑎 = 𝐴 → (𝑎 +no 𝑏) = (𝐴 +no 𝑏)) |
12 | 10, 11 | sseq12d 4015 |
. 2
⊢ (𝑎 = 𝐴 → ((𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏) ↔ (𝐴 +o 𝑏) ⊆ (𝐴 +no 𝑏))) |
13 | | oveq2 7416 |
. . 3
⊢ (𝑏 = 𝐵 → (𝐴 +o 𝑏) = (𝐴 +o 𝐵)) |
14 | | oveq2 7416 |
. . 3
⊢ (𝑏 = 𝐵 → (𝐴 +no 𝑏) = (𝐴 +no 𝐵)) |
15 | 13, 14 | sseq12d 4015 |
. 2
⊢ (𝑏 = 𝐵 → ((𝐴 +o 𝑏) ⊆ (𝐴 +no 𝑏) ↔ (𝐴 +o 𝐵) ⊆ (𝐴 +no 𝐵))) |
16 | | simplll 773 |
. . . . . 6
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) ∧ (∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → 𝑎 ∈ On) |
17 | | simpllr 774 |
. . . . . . 7
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) ∧ (∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → 𝑏 ∈ On) |
18 | | simplr 767 |
. . . . . . 7
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) ∧ (∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → Lim 𝑏) |
19 | 17, 18 | jca 512 |
. . . . . 6
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) ∧ (∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑏 ∈ On ∧ Lim 𝑏)) |
20 | | oalim 8531 |
. . . . . 6
⊢ ((𝑎 ∈ On ∧ (𝑏 ∈ On ∧ Lim 𝑏)) → (𝑎 +o 𝑏) = ∪ 𝑑 ∈ 𝑏 (𝑎 +o 𝑑)) |
21 | 16, 19, 20 | syl2anc 584 |
. . . . 5
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) ∧ (∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +o 𝑏) = ∪ 𝑑 ∈ 𝑏 (𝑎 +o 𝑑)) |
22 | | simpl 483 |
. . . . . 6
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) → (𝑎 ∈ On ∧ 𝑏 ∈ On)) |
23 | | simp3 1138 |
. . . . . 6
⊢
((∀𝑐 ∈
𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) |
24 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) |
25 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → 𝑏 ∈ On) |
26 | | onelss 6406 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ On → (𝑑 ∈ 𝑏 → 𝑑 ⊆ 𝑏)) |
27 | 25, 26 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑑 ∈ 𝑏 → 𝑑 ⊆ 𝑏)) |
28 | 27 | imp 407 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) → 𝑑 ⊆ 𝑏) |
29 | | simplr 767 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) → 𝑏 ∈ On) |
30 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) → 𝑑 ∈ 𝑏) |
31 | | onelon 6389 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 ∈ On ∧ 𝑑 ∈ 𝑏) → 𝑑 ∈ On) |
32 | 29, 30, 31 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) → 𝑑 ∈ On) |
33 | | simpll 765 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) → 𝑎 ∈ On) |
34 | | naddss2 8688 |
. . . . . . . . . . . . . 14
⊢ ((𝑑 ∈ On ∧ 𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑑 ⊆ 𝑏 ↔ (𝑎 +no 𝑑) ⊆ (𝑎 +no 𝑏))) |
35 | 32, 29, 33, 34 | syl3anc 1371 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) → (𝑑 ⊆ 𝑏 ↔ (𝑎 +no 𝑑) ⊆ (𝑎 +no 𝑏))) |
36 | 28, 35 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) → (𝑎 +no 𝑑) ⊆ (𝑎 +no 𝑏)) |
37 | 36 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +no 𝑑) ⊆ (𝑎 +no 𝑏)) |
38 | 24, 37 | sstrd 3992 |
. . . . . . . . . 10
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏)) |
39 | 38 | ex 413 |
. . . . . . . . 9
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) → ((𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑) → (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏))) |
40 | 39 | ralimdva 3167 |
. . . . . . . 8
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) →
(∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑) → ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏))) |
41 | 40 | imp 407 |
. . . . . . 7
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏)) |
42 | | iunss 5048 |
. . . . . . 7
⊢ (∪ 𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏) ↔ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏)) |
43 | 41, 42 | sylibr 233 |
. . . . . 6
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → ∪
𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏)) |
44 | 22, 23, 43 | syl2an 596 |
. . . . 5
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) ∧ (∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → ∪ 𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏)) |
45 | 21, 44 | eqsstrd 4020 |
. . . 4
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) ∧ (∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)) |
46 | 45 | exp31 420 |
. . 3
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (Lim 𝑏 → ((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)))) |
47 | | dflim3 7835 |
. . . . . . 7
⊢ (Lim
𝑏 ↔ (Ord 𝑏 ∧ ¬ (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑))) |
48 | 47 | notbii 319 |
. . . . . 6
⊢ (¬
Lim 𝑏 ↔ ¬ (Ord
𝑏 ∧ ¬ (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑))) |
49 | | iman 402 |
. . . . . 6
⊢ ((Ord
𝑏 → (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑)) ↔ ¬ (Ord 𝑏 ∧ ¬ (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑))) |
50 | 48, 49 | bitr4i 277 |
. . . . 5
⊢ (¬
Lim 𝑏 ↔ (Ord 𝑏 → (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑))) |
51 | | eloni 6374 |
. . . . . 6
⊢ (𝑏 ∈ On → Ord 𝑏) |
52 | | pm5.5 361 |
. . . . . 6
⊢ (Ord
𝑏 → ((Ord 𝑏 → (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑)) ↔ (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑))) |
53 | 25, 51, 52 | 3syl 18 |
. . . . 5
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((Ord 𝑏 → (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑)) ↔ (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑))) |
54 | 50, 53 | bitrid 282 |
. . . 4
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (¬ Lim
𝑏 ↔ (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑))) |
55 | | ssidd 4005 |
. . . . . . . 8
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → 𝑎 ⊆ 𝑎) |
56 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → 𝑏 = ∅) |
57 | 56 | oveq2d 7424 |
. . . . . . . . 9
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → (𝑎 +o 𝑏) = (𝑎 +o ∅)) |
58 | | simpll 765 |
. . . . . . . . . 10
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → 𝑎 ∈ On) |
59 | | oa0 8515 |
. . . . . . . . . 10
⊢ (𝑎 ∈ On → (𝑎 +o ∅) = 𝑎) |
60 | 58, 59 | syl 17 |
. . . . . . . . 9
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → (𝑎 +o ∅) = 𝑎) |
61 | 57, 60 | eqtrd 2772 |
. . . . . . . 8
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → (𝑎 +o 𝑏) = 𝑎) |
62 | 56 | oveq2d 7424 |
. . . . . . . . 9
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → (𝑎 +no 𝑏) = (𝑎 +no ∅)) |
63 | | naddrid 8681 |
. . . . . . . . . 10
⊢ (𝑎 ∈ On → (𝑎 +no ∅) = 𝑎) |
64 | 58, 63 | syl 17 |
. . . . . . . . 9
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → (𝑎 +no ∅) = 𝑎) |
65 | 62, 64 | eqtrd 2772 |
. . . . . . . 8
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → (𝑎 +no 𝑏) = 𝑎) |
66 | 55, 61, 65 | 3sstr4d 4029 |
. . . . . . 7
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)) |
67 | 66 | a1d 25 |
. . . . . 6
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) →
((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏))) |
68 | 67 | ex 413 |
. . . . 5
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑏 = ∅ →
((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)))) |
69 | | vex 3478 |
. . . . . . . . . . 11
⊢ 𝑑 ∈ V |
70 | 69 | sucid 6446 |
. . . . . . . . . 10
⊢ 𝑑 ∈ suc 𝑑 |
71 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝑑 ∈ On ∧ 𝑏 = suc 𝑑) → 𝑏 = suc 𝑑) |
72 | 70, 71 | eleqtrrid 2840 |
. . . . . . . . 9
⊢ ((𝑑 ∈ On ∧ 𝑏 = suc 𝑑) → 𝑑 ∈ 𝑏) |
73 | 72, 71 | jca 512 |
. . . . . . . 8
⊢ ((𝑑 ∈ On ∧ 𝑏 = suc 𝑑) → (𝑑 ∈ 𝑏 ∧ 𝑏 = suc 𝑑)) |
74 | 73 | a1i 11 |
. . . . . . 7
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑑 ∈ On ∧ 𝑏 = suc 𝑑) → (𝑑 ∈ 𝑏 ∧ 𝑏 = suc 𝑑))) |
75 | 74 | reximdv2 3164 |
. . . . . 6
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∃𝑑 ∈ On 𝑏 = suc 𝑑 → ∃𝑑 ∈ 𝑏 𝑏 = suc 𝑑)) |
76 | | r19.29r 3116 |
. . . . . . . . 9
⊢
((∃𝑑 ∈
𝑏 𝑏 = suc 𝑑 ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → ∃𝑑 ∈ 𝑏 (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) |
77 | | simprr 771 |
. . . . . . . . . . . 12
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) |
78 | 33, 32 | jca 512 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) → (𝑎 ∈ On ∧ 𝑑 ∈ On)) |
79 | | oacl 8534 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ On ∧ 𝑑 ∈ On) → (𝑎 +o 𝑑) ∈ On) |
80 | | eloni 6374 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 +o 𝑑) ∈ On → Ord (𝑎 +o 𝑑)) |
81 | 79, 80 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ On ∧ 𝑑 ∈ On) → Ord (𝑎 +o 𝑑)) |
82 | | naddcl 8675 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ On ∧ 𝑑 ∈ On) → (𝑎 +no 𝑑) ∈ On) |
83 | | eloni 6374 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 +no 𝑑) ∈ On → Ord (𝑎 +no 𝑑)) |
84 | 82, 83 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ On ∧ 𝑑 ∈ On) → Ord (𝑎 +no 𝑑)) |
85 | 81, 84 | jca 512 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ On ∧ 𝑑 ∈ On) → (Ord (𝑎 +o 𝑑) ∧ Ord (𝑎 +no 𝑑))) |
86 | | ordsucsssuc 7810 |
. . . . . . . . . . . . . 14
⊢ ((Ord
(𝑎 +o 𝑑) ∧ Ord (𝑎 +no 𝑑)) → ((𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑) ↔ suc (𝑎 +o 𝑑) ⊆ suc (𝑎 +no 𝑑))) |
87 | 78, 85, 86 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) → ((𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑) ↔ suc (𝑎 +o 𝑑) ⊆ suc (𝑎 +no 𝑑))) |
88 | 87 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → ((𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑) ↔ suc (𝑎 +o 𝑑) ⊆ suc (𝑎 +no 𝑑))) |
89 | 77, 88 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → suc (𝑎 +o 𝑑) ⊆ suc (𝑎 +no 𝑑)) |
90 | | simprl 769 |
. . . . . . . . . . . . 13
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → 𝑏 = suc 𝑑) |
91 | 90 | oveq2d 7424 |
. . . . . . . . . . . 12
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +o 𝑏) = (𝑎 +o suc 𝑑)) |
92 | 78 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 ∈ On ∧ 𝑑 ∈ On)) |
93 | | oasuc 8523 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ On ∧ 𝑑 ∈ On) → (𝑎 +o suc 𝑑) = suc (𝑎 +o 𝑑)) |
94 | 92, 93 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +o suc 𝑑) = suc (𝑎 +o 𝑑)) |
95 | 91, 94 | eqtrd 2772 |
. . . . . . . . . . 11
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +o 𝑏) = suc (𝑎 +o 𝑑)) |
96 | 90 | oveq2d 7424 |
. . . . . . . . . . . 12
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +no 𝑏) = (𝑎 +no suc 𝑑)) |
97 | | simplll 773 |
. . . . . . . . . . . . 13
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → 𝑎 ∈ On) |
98 | 31 | ad4ant23 751 |
. . . . . . . . . . . . 13
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → 𝑑 ∈ On) |
99 | | naddsuc2 42133 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ On ∧ 𝑑 ∈ On) → (𝑎 +no suc 𝑑) = suc (𝑎 +no 𝑑)) |
100 | 97, 98, 99 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +no suc 𝑑) = suc (𝑎 +no 𝑑)) |
101 | 96, 100 | eqtrd 2772 |
. . . . . . . . . . 11
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +no 𝑏) = suc (𝑎 +no 𝑑)) |
102 | 89, 95, 101 | 3sstr4d 4029 |
. . . . . . . . . 10
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)) |
103 | 102 | rexlimdva2 3157 |
. . . . . . . . 9
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∃𝑑 ∈ 𝑏 (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏))) |
104 | 76, 103 | syl5 34 |
. . . . . . . 8
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) →
((∃𝑑 ∈ 𝑏 𝑏 = suc 𝑑 ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏))) |
105 | 104 | expd 416 |
. . . . . . 7
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∃𝑑 ∈ 𝑏 𝑏 = suc 𝑑 → (∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)))) |
106 | 23, 105 | syl7 74 |
. . . . . 6
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∃𝑑 ∈ 𝑏 𝑏 = suc 𝑑 → ((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)))) |
107 | 75, 106 | syld 47 |
. . . . 5
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∃𝑑 ∈ On 𝑏 = suc 𝑑 → ((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)))) |
108 | 68, 107 | jaod 857 |
. . . 4
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑) → ((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)))) |
109 | 54, 108 | sylbid 239 |
. . 3
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (¬ Lim
𝑏 → ((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)))) |
110 | 46, 109 | pm2.61d 179 |
. 2
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) →
((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏))) |
111 | 3, 6, 9, 12, 15, 110 | on2ind 8667 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ⊆ (𝐴 +no 𝐵)) |