| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | oveq1 7438 | . . 3
⊢ (𝑎 = 𝑐 → (𝑎 +o 𝑏) = (𝑐 +o 𝑏)) | 
| 2 |  | oveq1 7438 | . . 3
⊢ (𝑎 = 𝑐 → (𝑎 +no 𝑏) = (𝑐 +no 𝑏)) | 
| 3 | 1, 2 | sseq12d 4017 | . 2
⊢ (𝑎 = 𝑐 → ((𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏) ↔ (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏))) | 
| 4 |  | oveq2 7439 | . . 3
⊢ (𝑏 = 𝑑 → (𝑐 +o 𝑏) = (𝑐 +o 𝑑)) | 
| 5 |  | oveq2 7439 | . . 3
⊢ (𝑏 = 𝑑 → (𝑐 +no 𝑏) = (𝑐 +no 𝑑)) | 
| 6 | 4, 5 | sseq12d 4017 | . 2
⊢ (𝑏 = 𝑑 → ((𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ↔ (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑))) | 
| 7 |  | oveq1 7438 | . . 3
⊢ (𝑎 = 𝑐 → (𝑎 +o 𝑑) = (𝑐 +o 𝑑)) | 
| 8 |  | oveq1 7438 | . . 3
⊢ (𝑎 = 𝑐 → (𝑎 +no 𝑑) = (𝑐 +no 𝑑)) | 
| 9 | 7, 8 | sseq12d 4017 | . 2
⊢ (𝑎 = 𝑐 → ((𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑) ↔ (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑))) | 
| 10 |  | oveq1 7438 | . . 3
⊢ (𝑎 = 𝐴 → (𝑎 +o 𝑏) = (𝐴 +o 𝑏)) | 
| 11 |  | oveq1 7438 | . . 3
⊢ (𝑎 = 𝐴 → (𝑎 +no 𝑏) = (𝐴 +no 𝑏)) | 
| 12 | 10, 11 | sseq12d 4017 | . 2
⊢ (𝑎 = 𝐴 → ((𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏) ↔ (𝐴 +o 𝑏) ⊆ (𝐴 +no 𝑏))) | 
| 13 |  | oveq2 7439 | . . 3
⊢ (𝑏 = 𝐵 → (𝐴 +o 𝑏) = (𝐴 +o 𝐵)) | 
| 14 |  | oveq2 7439 | . . 3
⊢ (𝑏 = 𝐵 → (𝐴 +no 𝑏) = (𝐴 +no 𝐵)) | 
| 15 | 13, 14 | sseq12d 4017 | . 2
⊢ (𝑏 = 𝐵 → ((𝐴 +o 𝑏) ⊆ (𝐴 +no 𝑏) ↔ (𝐴 +o 𝐵) ⊆ (𝐴 +no 𝐵))) | 
| 16 |  | simplll 775 | . . . . . 6
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) ∧ (∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → 𝑎 ∈ On) | 
| 17 |  | simpllr 776 | . . . . . . 7
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) ∧ (∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → 𝑏 ∈ On) | 
| 18 |  | simplr 769 | . . . . . . 7
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) ∧ (∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → Lim 𝑏) | 
| 19 | 17, 18 | jca 511 | . . . . . 6
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) ∧ (∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑏 ∈ On ∧ Lim 𝑏)) | 
| 20 |  | oalim 8570 | . . . . . 6
⊢ ((𝑎 ∈ On ∧ (𝑏 ∈ On ∧ Lim 𝑏)) → (𝑎 +o 𝑏) = ∪ 𝑑 ∈ 𝑏 (𝑎 +o 𝑑)) | 
| 21 | 16, 19, 20 | syl2anc 584 | . . . . 5
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) ∧ (∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +o 𝑏) = ∪ 𝑑 ∈ 𝑏 (𝑎 +o 𝑑)) | 
| 22 |  | simpl 482 | . . . . . 6
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) → (𝑎 ∈ On ∧ 𝑏 ∈ On)) | 
| 23 |  | simp3 1139 | . . . . . 6
⊢
((∀𝑐 ∈
𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) | 
| 24 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) | 
| 25 |  | simpr 484 | . . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → 𝑏 ∈ On) | 
| 26 |  | onelss 6426 | . . . . . . . . . . . . . . 15
⊢ (𝑏 ∈ On → (𝑑 ∈ 𝑏 → 𝑑 ⊆ 𝑏)) | 
| 27 | 25, 26 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑑 ∈ 𝑏 → 𝑑 ⊆ 𝑏)) | 
| 28 | 27 | imp 406 | . . . . . . . . . . . . 13
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) → 𝑑 ⊆ 𝑏) | 
| 29 |  | simplr 769 | . . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) → 𝑏 ∈ On) | 
| 30 |  | simpr 484 | . . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) → 𝑑 ∈ 𝑏) | 
| 31 |  | onelon 6409 | . . . . . . . . . . . . . . 15
⊢ ((𝑏 ∈ On ∧ 𝑑 ∈ 𝑏) → 𝑑 ∈ On) | 
| 32 | 29, 30, 31 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) → 𝑑 ∈ On) | 
| 33 |  | simpll 767 | . . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) → 𝑎 ∈ On) | 
| 34 |  | naddss2 8728 | . . . . . . . . . . . . . 14
⊢ ((𝑑 ∈ On ∧ 𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑑 ⊆ 𝑏 ↔ (𝑎 +no 𝑑) ⊆ (𝑎 +no 𝑏))) | 
| 35 | 32, 29, 33, 34 | syl3anc 1373 | . . . . . . . . . . . . 13
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) → (𝑑 ⊆ 𝑏 ↔ (𝑎 +no 𝑑) ⊆ (𝑎 +no 𝑏))) | 
| 36 | 28, 35 | mpbid 232 | . . . . . . . . . . . 12
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) → (𝑎 +no 𝑑) ⊆ (𝑎 +no 𝑏)) | 
| 37 | 36 | adantr 480 | . . . . . . . . . . 11
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +no 𝑑) ⊆ (𝑎 +no 𝑏)) | 
| 38 | 24, 37 | sstrd 3994 | . . . . . . . . . 10
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏)) | 
| 39 | 38 | ex 412 | . . . . . . . . 9
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) → ((𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑) → (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏))) | 
| 40 | 39 | ralimdva 3167 | . . . . . . . 8
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) →
(∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑) → ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏))) | 
| 41 | 40 | imp 406 | . . . . . . 7
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏)) | 
| 42 |  | iunss 5045 | . . . . . . 7
⊢ (∪ 𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏) ↔ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏)) | 
| 43 | 41, 42 | sylibr 234 | . . . . . 6
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → ∪
𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏)) | 
| 44 | 22, 23, 43 | syl2an 596 | . . . . 5
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) ∧ (∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → ∪ 𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏)) | 
| 45 | 21, 44 | eqsstrd 4018 | . . . 4
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) ∧ (∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)) | 
| 46 | 45 | exp31 419 | . . 3
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (Lim 𝑏 → ((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)))) | 
| 47 |  | dflim3 7868 | . . . . . . 7
⊢ (Lim
𝑏 ↔ (Ord 𝑏 ∧ ¬ (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑))) | 
| 48 | 47 | notbii 320 | . . . . . 6
⊢ (¬
Lim 𝑏 ↔ ¬ (Ord
𝑏 ∧ ¬ (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑))) | 
| 49 |  | iman 401 | . . . . . 6
⊢ ((Ord
𝑏 → (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑)) ↔ ¬ (Ord 𝑏 ∧ ¬ (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑))) | 
| 50 | 48, 49 | bitr4i 278 | . . . . 5
⊢ (¬
Lim 𝑏 ↔ (Ord 𝑏 → (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑))) | 
| 51 |  | eloni 6394 | . . . . . 6
⊢ (𝑏 ∈ On → Ord 𝑏) | 
| 52 |  | pm5.5 361 | . . . . . 6
⊢ (Ord
𝑏 → ((Ord 𝑏 → (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑)) ↔ (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑))) | 
| 53 | 25, 51, 52 | 3syl 18 | . . . . 5
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((Ord 𝑏 → (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑)) ↔ (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑))) | 
| 54 | 50, 53 | bitrid 283 | . . . 4
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (¬ Lim
𝑏 ↔ (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑))) | 
| 55 |  | ssidd 4007 | . . . . . . . 8
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → 𝑎 ⊆ 𝑎) | 
| 56 |  | simpr 484 | . . . . . . . . . 10
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → 𝑏 = ∅) | 
| 57 | 56 | oveq2d 7447 | . . . . . . . . 9
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → (𝑎 +o 𝑏) = (𝑎 +o ∅)) | 
| 58 |  | simpll 767 | . . . . . . . . . 10
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → 𝑎 ∈ On) | 
| 59 |  | oa0 8554 | . . . . . . . . . 10
⊢ (𝑎 ∈ On → (𝑎 +o ∅) = 𝑎) | 
| 60 | 58, 59 | syl 17 | . . . . . . . . 9
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → (𝑎 +o ∅) = 𝑎) | 
| 61 | 57, 60 | eqtrd 2777 | . . . . . . . 8
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → (𝑎 +o 𝑏) = 𝑎) | 
| 62 | 56 | oveq2d 7447 | . . . . . . . . 9
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → (𝑎 +no 𝑏) = (𝑎 +no ∅)) | 
| 63 |  | naddrid 8721 | . . . . . . . . . 10
⊢ (𝑎 ∈ On → (𝑎 +no ∅) = 𝑎) | 
| 64 | 58, 63 | syl 17 | . . . . . . . . 9
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → (𝑎 +no ∅) = 𝑎) | 
| 65 | 62, 64 | eqtrd 2777 | . . . . . . . 8
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → (𝑎 +no 𝑏) = 𝑎) | 
| 66 | 55, 61, 65 | 3sstr4d 4039 | . . . . . . 7
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)) | 
| 67 | 66 | a1d 25 | . . . . . 6
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) →
((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏))) | 
| 68 | 67 | ex 412 | . . . . 5
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑏 = ∅ →
((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)))) | 
| 69 |  | vex 3484 | . . . . . . . . . . 11
⊢ 𝑑 ∈ V | 
| 70 | 69 | sucid 6466 | . . . . . . . . . 10
⊢ 𝑑 ∈ suc 𝑑 | 
| 71 |  | simpr 484 | . . . . . . . . . 10
⊢ ((𝑑 ∈ On ∧ 𝑏 = suc 𝑑) → 𝑏 = suc 𝑑) | 
| 72 | 70, 71 | eleqtrrid 2848 | . . . . . . . . 9
⊢ ((𝑑 ∈ On ∧ 𝑏 = suc 𝑑) → 𝑑 ∈ 𝑏) | 
| 73 | 72, 71 | jca 511 | . . . . . . . 8
⊢ ((𝑑 ∈ On ∧ 𝑏 = suc 𝑑) → (𝑑 ∈ 𝑏 ∧ 𝑏 = suc 𝑑)) | 
| 74 | 73 | a1i 11 | . . . . . . 7
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑑 ∈ On ∧ 𝑏 = suc 𝑑) → (𝑑 ∈ 𝑏 ∧ 𝑏 = suc 𝑑))) | 
| 75 | 74 | reximdv2 3164 | . . . . . 6
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∃𝑑 ∈ On 𝑏 = suc 𝑑 → ∃𝑑 ∈ 𝑏 𝑏 = suc 𝑑)) | 
| 76 |  | r19.29r 3116 | . . . . . . . . 9
⊢
((∃𝑑 ∈
𝑏 𝑏 = suc 𝑑 ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → ∃𝑑 ∈ 𝑏 (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) | 
| 77 |  | simprr 773 | . . . . . . . . . . . 12
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) | 
| 78 | 33, 32 | jca 511 | . . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) → (𝑎 ∈ On ∧ 𝑑 ∈ On)) | 
| 79 |  | oacl 8573 | . . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ On ∧ 𝑑 ∈ On) → (𝑎 +o 𝑑) ∈ On) | 
| 80 |  | eloni 6394 | . . . . . . . . . . . . . . . 16
⊢ ((𝑎 +o 𝑑) ∈ On → Ord (𝑎 +o 𝑑)) | 
| 81 | 79, 80 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ On ∧ 𝑑 ∈ On) → Ord (𝑎 +o 𝑑)) | 
| 82 |  | naddcl 8715 | . . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ On ∧ 𝑑 ∈ On) → (𝑎 +no 𝑑) ∈ On) | 
| 83 |  | eloni 6394 | . . . . . . . . . . . . . . . 16
⊢ ((𝑎 +no 𝑑) ∈ On → Ord (𝑎 +no 𝑑)) | 
| 84 | 82, 83 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((𝑎 ∈ On ∧ 𝑑 ∈ On) → Ord (𝑎 +no 𝑑)) | 
| 85 | 81, 84 | jca 511 | . . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ On ∧ 𝑑 ∈ On) → (Ord (𝑎 +o 𝑑) ∧ Ord (𝑎 +no 𝑑))) | 
| 86 |  | ordsucsssuc 7843 | . . . . . . . . . . . . . 14
⊢ ((Ord
(𝑎 +o 𝑑) ∧ Ord (𝑎 +no 𝑑)) → ((𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑) ↔ suc (𝑎 +o 𝑑) ⊆ suc (𝑎 +no 𝑑))) | 
| 87 | 78, 85, 86 | 3syl 18 | . . . . . . . . . . . . 13
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) → ((𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑) ↔ suc (𝑎 +o 𝑑) ⊆ suc (𝑎 +no 𝑑))) | 
| 88 | 87 | adantr 480 | . . . . . . . . . . . 12
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → ((𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑) ↔ suc (𝑎 +o 𝑑) ⊆ suc (𝑎 +no 𝑑))) | 
| 89 | 77, 88 | mpbid 232 | . . . . . . . . . . 11
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → suc (𝑎 +o 𝑑) ⊆ suc (𝑎 +no 𝑑)) | 
| 90 |  | simprl 771 | . . . . . . . . . . . . 13
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → 𝑏 = suc 𝑑) | 
| 91 | 90 | oveq2d 7447 | . . . . . . . . . . . 12
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +o 𝑏) = (𝑎 +o suc 𝑑)) | 
| 92 | 78 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 ∈ On ∧ 𝑑 ∈ On)) | 
| 93 |  | oasuc 8562 | . . . . . . . . . . . . 13
⊢ ((𝑎 ∈ On ∧ 𝑑 ∈ On) → (𝑎 +o suc 𝑑) = suc (𝑎 +o 𝑑)) | 
| 94 | 92, 93 | syl 17 | . . . . . . . . . . . 12
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +o suc 𝑑) = suc (𝑎 +o 𝑑)) | 
| 95 | 91, 94 | eqtrd 2777 | . . . . . . . . . . 11
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +o 𝑏) = suc (𝑎 +o 𝑑)) | 
| 96 | 90 | oveq2d 7447 | . . . . . . . . . . . 12
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +no 𝑏) = (𝑎 +no suc 𝑑)) | 
| 97 |  | simplll 775 | . . . . . . . . . . . . 13
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → 𝑎 ∈ On) | 
| 98 | 31 | ad4ant23 753 | . . . . . . . . . . . . 13
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → 𝑑 ∈ On) | 
| 99 |  | naddsuc2 8739 | . . . . . . . . . . . . 13
⊢ ((𝑎 ∈ On ∧ 𝑑 ∈ On) → (𝑎 +no suc 𝑑) = suc (𝑎 +no 𝑑)) | 
| 100 | 97, 98, 99 | syl2anc 584 | . . . . . . . . . . . 12
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +no suc 𝑑) = suc (𝑎 +no 𝑑)) | 
| 101 | 96, 100 | eqtrd 2777 | . . . . . . . . . . 11
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +no 𝑏) = suc (𝑎 +no 𝑑)) | 
| 102 | 89, 95, 101 | 3sstr4d 4039 | . . . . . . . . . 10
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑 ∈ 𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)) | 
| 103 | 102 | rexlimdva2 3157 | . . . . . . . . 9
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∃𝑑 ∈ 𝑏 (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏))) | 
| 104 | 76, 103 | syl5 34 | . . . . . . . 8
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) →
((∃𝑑 ∈ 𝑏 𝑏 = suc 𝑑 ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏))) | 
| 105 | 104 | expd 415 | . . . . . . 7
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∃𝑑 ∈ 𝑏 𝑏 = suc 𝑑 → (∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)))) | 
| 106 | 23, 105 | syl7 74 | . . . . . 6
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∃𝑑 ∈ 𝑏 𝑏 = suc 𝑑 → ((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)))) | 
| 107 | 75, 106 | syld 47 | . . . . 5
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∃𝑑 ∈ On 𝑏 = suc 𝑑 → ((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)))) | 
| 108 | 68, 107 | jaod 860 | . . . 4
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑) → ((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)))) | 
| 109 | 54, 108 | sylbid 240 | . . 3
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (¬ Lim
𝑏 → ((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)))) | 
| 110 | 46, 109 | pm2.61d 179 | . 2
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) →
((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏))) | 
| 111 | 3, 6, 9, 12, 15, 110 | on2ind 8707 | 1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ⊆ (𝐴 +no 𝐵)) |