Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddgeoa Structured version   Visualization version   GIF version

Theorem naddgeoa 43367
Description: Natural addition results in a value greater than or equal than that of ordinal addition. (Contributed by RP, 1-Jan-2025.)
Assertion
Ref Expression
naddgeoa ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ⊆ (𝐴 +no 𝐵))

Proof of Theorem naddgeoa
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7356 . . 3 (𝑎 = 𝑐 → (𝑎 +o 𝑏) = (𝑐 +o 𝑏))
2 oveq1 7356 . . 3 (𝑎 = 𝑐 → (𝑎 +no 𝑏) = (𝑐 +no 𝑏))
31, 2sseq12d 3969 . 2 (𝑎 = 𝑐 → ((𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏) ↔ (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏)))
4 oveq2 7357 . . 3 (𝑏 = 𝑑 → (𝑐 +o 𝑏) = (𝑐 +o 𝑑))
5 oveq2 7357 . . 3 (𝑏 = 𝑑 → (𝑐 +no 𝑏) = (𝑐 +no 𝑑))
64, 5sseq12d 3969 . 2 (𝑏 = 𝑑 → ((𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ↔ (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑)))
7 oveq1 7356 . . 3 (𝑎 = 𝑐 → (𝑎 +o 𝑑) = (𝑐 +o 𝑑))
8 oveq1 7356 . . 3 (𝑎 = 𝑐 → (𝑎 +no 𝑑) = (𝑐 +no 𝑑))
97, 8sseq12d 3969 . 2 (𝑎 = 𝑐 → ((𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑) ↔ (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑)))
10 oveq1 7356 . . 3 (𝑎 = 𝐴 → (𝑎 +o 𝑏) = (𝐴 +o 𝑏))
11 oveq1 7356 . . 3 (𝑎 = 𝐴 → (𝑎 +no 𝑏) = (𝐴 +no 𝑏))
1210, 11sseq12d 3969 . 2 (𝑎 = 𝐴 → ((𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏) ↔ (𝐴 +o 𝑏) ⊆ (𝐴 +no 𝑏)))
13 oveq2 7357 . . 3 (𝑏 = 𝐵 → (𝐴 +o 𝑏) = (𝐴 +o 𝐵))
14 oveq2 7357 . . 3 (𝑏 = 𝐵 → (𝐴 +no 𝑏) = (𝐴 +no 𝐵))
1513, 14sseq12d 3969 . 2 (𝑏 = 𝐵 → ((𝐴 +o 𝑏) ⊆ (𝐴 +no 𝑏) ↔ (𝐴 +o 𝐵) ⊆ (𝐴 +no 𝐵)))
16 simplll 774 . . . . . 6 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → 𝑎 ∈ On)
17 simpllr 775 . . . . . . 7 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → 𝑏 ∈ On)
18 simplr 768 . . . . . . 7 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → Lim 𝑏)
1917, 18jca 511 . . . . . 6 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑏 ∈ On ∧ Lim 𝑏))
20 oalim 8450 . . . . . 6 ((𝑎 ∈ On ∧ (𝑏 ∈ On ∧ Lim 𝑏)) → (𝑎 +o 𝑏) = 𝑑𝑏 (𝑎 +o 𝑑))
2116, 19, 20syl2anc 584 . . . . 5 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +o 𝑏) = 𝑑𝑏 (𝑎 +o 𝑑))
22 simpl 482 . . . . . 6 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) → (𝑎 ∈ On ∧ 𝑏 ∈ On))
23 simp3 1138 . . . . . 6 ((∀𝑐𝑎𝑑𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))
24 simpr 484 . . . . . . . . . . 11 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))
25 simpr 484 . . . . . . . . . . . . . . 15 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → 𝑏 ∈ On)
26 onelss 6349 . . . . . . . . . . . . . . 15 (𝑏 ∈ On → (𝑑𝑏𝑑𝑏))
2725, 26syl 17 . . . . . . . . . . . . . 14 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑑𝑏𝑑𝑏))
2827imp 406 . . . . . . . . . . . . 13 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) → 𝑑𝑏)
29 simplr 768 . . . . . . . . . . . . . . 15 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) → 𝑏 ∈ On)
30 simpr 484 . . . . . . . . . . . . . . 15 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) → 𝑑𝑏)
31 onelon 6332 . . . . . . . . . . . . . . 15 ((𝑏 ∈ On ∧ 𝑑𝑏) → 𝑑 ∈ On)
3229, 30, 31syl2anc 584 . . . . . . . . . . . . . 14 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) → 𝑑 ∈ On)
33 simpll 766 . . . . . . . . . . . . . 14 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) → 𝑎 ∈ On)
34 naddss2 8608 . . . . . . . . . . . . . 14 ((𝑑 ∈ On ∧ 𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑑𝑏 ↔ (𝑎 +no 𝑑) ⊆ (𝑎 +no 𝑏)))
3532, 29, 33, 34syl3anc 1373 . . . . . . . . . . . . 13 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) → (𝑑𝑏 ↔ (𝑎 +no 𝑑) ⊆ (𝑎 +no 𝑏)))
3628, 35mpbid 232 . . . . . . . . . . . 12 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) → (𝑎 +no 𝑑) ⊆ (𝑎 +no 𝑏))
3736adantr 480 . . . . . . . . . . 11 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +no 𝑑) ⊆ (𝑎 +no 𝑏))
3824, 37sstrd 3946 . . . . . . . . . 10 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏))
3938ex 412 . . . . . . . . 9 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) → ((𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑) → (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏)))
4039ralimdva 3141 . . . . . . . 8 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑) → ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏)))
4140imp 406 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏))
42 iunss 4994 . . . . . . 7 ( 𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏) ↔ ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏))
4341, 42sylibr 234 . . . . . 6 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → 𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏))
4422, 23, 43syl2an 596 . . . . 5 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → 𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑏))
4521, 44eqsstrd 3970 . . . 4 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ Lim 𝑏) ∧ (∀𝑐𝑎𝑑𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏))
4645exp31 419 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (Lim 𝑏 → ((∀𝑐𝑎𝑑𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏))))
47 dflim3 7780 . . . . . . 7 (Lim 𝑏 ↔ (Ord 𝑏 ∧ ¬ (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑)))
4847notbii 320 . . . . . 6 (¬ Lim 𝑏 ↔ ¬ (Ord 𝑏 ∧ ¬ (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑)))
49 iman 401 . . . . . 6 ((Ord 𝑏 → (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑)) ↔ ¬ (Ord 𝑏 ∧ ¬ (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑)))
5048, 49bitr4i 278 . . . . 5 (¬ Lim 𝑏 ↔ (Ord 𝑏 → (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑)))
51 eloni 6317 . . . . . 6 (𝑏 ∈ On → Ord 𝑏)
52 pm5.5 361 . . . . . 6 (Ord 𝑏 → ((Ord 𝑏 → (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑)) ↔ (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑)))
5325, 51, 523syl 18 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((Ord 𝑏 → (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑)) ↔ (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑)))
5450, 53bitrid 283 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (¬ Lim 𝑏 ↔ (𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑)))
55 ssidd 3959 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → 𝑎𝑎)
56 simpr 484 . . . . . . . . . 10 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → 𝑏 = ∅)
5756oveq2d 7365 . . . . . . . . 9 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → (𝑎 +o 𝑏) = (𝑎 +o ∅))
58 simpll 766 . . . . . . . . . 10 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → 𝑎 ∈ On)
59 oa0 8434 . . . . . . . . . 10 (𝑎 ∈ On → (𝑎 +o ∅) = 𝑎)
6058, 59syl 17 . . . . . . . . 9 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → (𝑎 +o ∅) = 𝑎)
6157, 60eqtrd 2764 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → (𝑎 +o 𝑏) = 𝑎)
6256oveq2d 7365 . . . . . . . . 9 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → (𝑎 +no 𝑏) = (𝑎 +no ∅))
63 naddrid 8601 . . . . . . . . . 10 (𝑎 ∈ On → (𝑎 +no ∅) = 𝑎)
6458, 63syl 17 . . . . . . . . 9 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → (𝑎 +no ∅) = 𝑎)
6562, 64eqtrd 2764 . . . . . . . 8 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → (𝑎 +no 𝑏) = 𝑎)
6655, 61, 653sstr4d 3991 . . . . . . 7 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏))
6766a1d 25 . . . . . 6 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑏 = ∅) → ((∀𝑐𝑎𝑑𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)))
6867ex 412 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑏 = ∅ → ((∀𝑐𝑎𝑑𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏))))
69 vex 3440 . . . . . . . . . . 11 𝑑 ∈ V
7069sucid 6391 . . . . . . . . . 10 𝑑 ∈ suc 𝑑
71 simpr 484 . . . . . . . . . 10 ((𝑑 ∈ On ∧ 𝑏 = suc 𝑑) → 𝑏 = suc 𝑑)
7270, 71eleqtrrid 2835 . . . . . . . . 9 ((𝑑 ∈ On ∧ 𝑏 = suc 𝑑) → 𝑑𝑏)
7372, 71jca 511 . . . . . . . 8 ((𝑑 ∈ On ∧ 𝑏 = suc 𝑑) → (𝑑𝑏𝑏 = suc 𝑑))
7473a1i 11 . . . . . . 7 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑑 ∈ On ∧ 𝑏 = suc 𝑑) → (𝑑𝑏𝑏 = suc 𝑑)))
7574reximdv2 3139 . . . . . 6 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∃𝑑 ∈ On 𝑏 = suc 𝑑 → ∃𝑑𝑏 𝑏 = suc 𝑑))
76 r19.29r 3093 . . . . . . . . 9 ((∃𝑑𝑏 𝑏 = suc 𝑑 ∧ ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → ∃𝑑𝑏 (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)))
77 simprr 772 . . . . . . . . . . . 12 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))
7833, 32jca 511 . . . . . . . . . . . . . 14 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) → (𝑎 ∈ On ∧ 𝑑 ∈ On))
79 oacl 8453 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ On ∧ 𝑑 ∈ On) → (𝑎 +o 𝑑) ∈ On)
80 eloni 6317 . . . . . . . . . . . . . . . 16 ((𝑎 +o 𝑑) ∈ On → Ord (𝑎 +o 𝑑))
8179, 80syl 17 . . . . . . . . . . . . . . 15 ((𝑎 ∈ On ∧ 𝑑 ∈ On) → Ord (𝑎 +o 𝑑))
82 naddcl 8595 . . . . . . . . . . . . . . . 16 ((𝑎 ∈ On ∧ 𝑑 ∈ On) → (𝑎 +no 𝑑) ∈ On)
83 eloni 6317 . . . . . . . . . . . . . . . 16 ((𝑎 +no 𝑑) ∈ On → Ord (𝑎 +no 𝑑))
8482, 83syl 17 . . . . . . . . . . . . . . 15 ((𝑎 ∈ On ∧ 𝑑 ∈ On) → Ord (𝑎 +no 𝑑))
8581, 84jca 511 . . . . . . . . . . . . . 14 ((𝑎 ∈ On ∧ 𝑑 ∈ On) → (Ord (𝑎 +o 𝑑) ∧ Ord (𝑎 +no 𝑑)))
86 ordsucsssuc 7756 . . . . . . . . . . . . . 14 ((Ord (𝑎 +o 𝑑) ∧ Ord (𝑎 +no 𝑑)) → ((𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑) ↔ suc (𝑎 +o 𝑑) ⊆ suc (𝑎 +no 𝑑)))
8778, 85, 863syl 18 . . . . . . . . . . . . 13 (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) → ((𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑) ↔ suc (𝑎 +o 𝑑) ⊆ suc (𝑎 +no 𝑑)))
8887adantr 480 . . . . . . . . . . . 12 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → ((𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑) ↔ suc (𝑎 +o 𝑑) ⊆ suc (𝑎 +no 𝑑)))
8977, 88mpbid 232 . . . . . . . . . . 11 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → suc (𝑎 +o 𝑑) ⊆ suc (𝑎 +no 𝑑))
90 simprl 770 . . . . . . . . . . . . 13 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → 𝑏 = suc 𝑑)
9190oveq2d 7365 . . . . . . . . . . . 12 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +o 𝑏) = (𝑎 +o suc 𝑑))
9278adantr 480 . . . . . . . . . . . . 13 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 ∈ On ∧ 𝑑 ∈ On))
93 oasuc 8442 . . . . . . . . . . . . 13 ((𝑎 ∈ On ∧ 𝑑 ∈ On) → (𝑎 +o suc 𝑑) = suc (𝑎 +o 𝑑))
9492, 93syl 17 . . . . . . . . . . . 12 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +o suc 𝑑) = suc (𝑎 +o 𝑑))
9591, 94eqtrd 2764 . . . . . . . . . . 11 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +o 𝑏) = suc (𝑎 +o 𝑑))
9690oveq2d 7365 . . . . . . . . . . . 12 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +no 𝑏) = (𝑎 +no suc 𝑑))
97 simplll 774 . . . . . . . . . . . . 13 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → 𝑎 ∈ On)
9831ad4ant23 753 . . . . . . . . . . . . 13 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → 𝑑 ∈ On)
99 naddsuc2 8619 . . . . . . . . . . . . 13 ((𝑎 ∈ On ∧ 𝑑 ∈ On) → (𝑎 +no suc 𝑑) = suc (𝑎 +no 𝑑))
10097, 98, 99syl2anc 584 . . . . . . . . . . . 12 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +no suc 𝑑) = suc (𝑎 +no 𝑑))
10196, 100eqtrd 2764 . . . . . . . . . . 11 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +no 𝑏) = suc (𝑎 +no 𝑑))
10289, 95, 1013sstr4d 3991 . . . . . . . . . 10 ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ 𝑑𝑏) ∧ (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑))) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏))
103102rexlimdva2 3132 . . . . . . . . 9 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∃𝑑𝑏 (𝑏 = suc 𝑑 ∧ (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)))
10476, 103syl5 34 . . . . . . . 8 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∃𝑑𝑏 𝑏 = suc 𝑑 ∧ ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)))
105104expd 415 . . . . . . 7 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∃𝑑𝑏 𝑏 = suc 𝑑 → (∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏))))
10623, 105syl7 74 . . . . . 6 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∃𝑑𝑏 𝑏 = suc 𝑑 → ((∀𝑐𝑎𝑑𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏))))
10775, 106syld 47 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (∃𝑑 ∈ On 𝑏 = suc 𝑑 → ((∀𝑐𝑎𝑑𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏))))
10868, 107jaod 859 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑏 = ∅ ∨ ∃𝑑 ∈ On 𝑏 = suc 𝑑) → ((∀𝑐𝑎𝑑𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏))))
10954, 108sylbid 240 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (¬ Lim 𝑏 → ((∀𝑐𝑎𝑑𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏))))
11046, 109pm2.61d 179 . 2 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((∀𝑐𝑎𝑑𝑏 (𝑐 +o 𝑑) ⊆ (𝑐 +no 𝑑) ∧ ∀𝑐𝑎 (𝑐 +o 𝑏) ⊆ (𝑐 +no 𝑏) ∧ ∀𝑑𝑏 (𝑎 +o 𝑑) ⊆ (𝑎 +no 𝑑)) → (𝑎 +o 𝑏) ⊆ (𝑎 +no 𝑏)))
1113, 6, 9, 12, 15, 110on2ind 8587 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ⊆ (𝐴 +no 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3903  c0 4284   ciun 4941  Ord word 6306  Oncon0 6307  Lim wlim 6308  suc csuc 6309  (class class class)co 7349   +o coa 8385   +no cnadd 8583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-oadd 8392  df-nadd 8584
This theorem is referenced by:  naddwordnexlem4  43374
  Copyright terms: Public domain W3C validator