Proof of Theorem umgr3v3e3cycl
| Step | Hyp | Ref
| Expression |
| 1 | | umgrupgr 29120 |
. . . . . 6
⊢ (𝐺 ∈ UMGraph → 𝐺 ∈
UPGraph) |
| 2 | 1 | adantr 480 |
. . . . 5
⊢ ((𝐺 ∈ UMGraph ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) → 𝐺 ∈ UPGraph) |
| 3 | | simpl 482 |
. . . . . 6
⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → 𝑓(Cycles‘𝐺)𝑝) |
| 4 | 3 | adantl 481 |
. . . . 5
⊢ ((𝐺 ∈ UMGraph ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) → 𝑓(Cycles‘𝐺)𝑝) |
| 5 | | simpr 484 |
. . . . . 6
⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → (♯‘𝑓) = 3) |
| 6 | 5 | adantl 481 |
. . . . 5
⊢ ((𝐺 ∈ UMGraph ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) → (♯‘𝑓) = 3) |
| 7 | | uhgr3cyclex.e |
. . . . . . 7
⊢ 𝐸 = (Edg‘𝐺) |
| 8 | | uhgr3cyclex.v |
. . . . . . 7
⊢ 𝑉 = (Vtx‘𝐺) |
| 9 | 7, 8 | upgr3v3e3cycl 30199 |
. . . . . 6
⊢ ((𝐺 ∈ UPGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎))) |
| 10 | | simpl 482 |
. . . . . . . . 9
⊢ ((({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) |
| 11 | 10 | reximi 3084 |
. . . . . . . 8
⊢
(∃𝑐 ∈
𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎)) → ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) |
| 12 | 11 | reximi 3084 |
. . . . . . 7
⊢
(∃𝑏 ∈
𝑉 ∃𝑐 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎)) → ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) |
| 13 | 12 | reximi 3084 |
. . . . . 6
⊢
(∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎 ≠ 𝑏 ∧ 𝑏 ≠ 𝑐 ∧ 𝑐 ≠ 𝑎)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) |
| 14 | 9, 13 | syl 17 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) |
| 15 | 2, 4, 6, 14 | syl3anc 1373 |
. . . 4
⊢ ((𝐺 ∈ UMGraph ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) |
| 16 | 15 | ex 412 |
. . 3
⊢ (𝐺 ∈ UMGraph → ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))) |
| 17 | 16 | exlimdvv 1934 |
. 2
⊢ (𝐺 ∈ UMGraph →
(∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))) |
| 18 | | simplll 775 |
. . . . 5
⊢ ((((𝐺 ∈ UMGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → 𝐺 ∈ UMGraph) |
| 19 | | df-3an 1089 |
. . . . . . 7
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ↔ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑐 ∈ 𝑉)) |
| 20 | 19 | biimpri 228 |
. . . . . 6
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑐 ∈ 𝑉) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) |
| 21 | 20 | ad4ant23 753 |
. . . . 5
⊢ ((((𝐺 ∈ UMGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉)) |
| 22 | | simpr 484 |
. . . . 5
⊢ ((((𝐺 ∈ UMGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) |
| 23 | 8, 7 | umgr3cyclex 30202 |
. . . . . 6
⊢ ((𝐺 ∈ UMGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎)) |
| 24 | | 3simpa 1149 |
. . . . . . 7
⊢ ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎) → (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) |
| 25 | 24 | 2eximi 1836 |
. . . . . 6
⊢
(∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) |
| 26 | 23, 25 | syl 17 |
. . . . 5
⊢ ((𝐺 ∈ UMGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) |
| 27 | 18, 21, 22, 26 | syl3anc 1373 |
. . . 4
⊢ ((((𝐺 ∈ UMGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) |
| 28 | 27 | rexlimdva2 3157 |
. . 3
⊢ ((𝐺 ∈ UMGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))) |
| 29 | 28 | rexlimdvva 3213 |
. 2
⊢ (𝐺 ∈ UMGraph →
(∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))) |
| 30 | 17, 29 | impbid 212 |
1
⊢ (𝐺 ∈ UMGraph →
(∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))) |