MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr3v3e3cycl Structured version   Visualization version   GIF version

Theorem umgr3v3e3cycl 29131
Description: If and only if there is a 3-cycle in a multigraph, there are three (different) vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 14-Nov-2017.) (Revised by AV, 12-Feb-2021.)
Hypotheses
Ref Expression
uhgr3cyclex.v 𝑉 = (Vtxβ€˜πΊ)
uhgr3cyclex.e 𝐸 = (Edgβ€˜πΊ)
Assertion
Ref Expression
umgr3v3e3cycl (𝐺 ∈ UMGraph β†’ (βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3) ↔ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸)))
Distinct variable groups:   𝑓,𝑝,𝐺   𝐸,π‘Ž,𝑏,𝑐,𝑓,𝑝   𝐺,π‘Ž,𝑏,𝑐   𝑉,π‘Ž,𝑏,𝑐,𝑓,𝑝

Proof of Theorem umgr3v3e3cycl
StepHypRef Expression
1 umgrupgr 28057 . . . . . 6 (𝐺 ∈ UMGraph β†’ 𝐺 ∈ UPGraph)
21adantr 482 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3)) β†’ 𝐺 ∈ UPGraph)
3 simpl 484 . . . . . 6 ((𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3) β†’ 𝑓(Cyclesβ€˜πΊ)𝑝)
43adantl 483 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3)) β†’ 𝑓(Cyclesβ€˜πΊ)𝑝)
5 simpr 486 . . . . . 6 ((𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3) β†’ (β™―β€˜π‘“) = 3)
65adantl 483 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3)) β†’ (β™―β€˜π‘“) = 3)
7 uhgr3cyclex.e . . . . . . 7 𝐸 = (Edgβ€˜πΊ)
8 uhgr3cyclex.v . . . . . . 7 𝑉 = (Vtxβ€˜πΊ)
97, 8upgr3v3e3cycl 29127 . . . . . 6 ((𝐺 ∈ UPGraph ∧ 𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3) β†’ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 (({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸) ∧ (π‘Ž β‰  𝑏 ∧ 𝑏 β‰  𝑐 ∧ 𝑐 β‰  π‘Ž)))
10 simpl 484 . . . . . . . . 9 ((({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸) ∧ (π‘Ž β‰  𝑏 ∧ 𝑏 β‰  𝑐 ∧ 𝑐 β‰  π‘Ž)) β†’ ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸))
1110reximi 3088 . . . . . . . 8 (βˆƒπ‘ ∈ 𝑉 (({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸) ∧ (π‘Ž β‰  𝑏 ∧ 𝑏 β‰  𝑐 ∧ 𝑐 β‰  π‘Ž)) β†’ βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸))
1211reximi 3088 . . . . . . 7 (βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 (({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸) ∧ (π‘Ž β‰  𝑏 ∧ 𝑏 β‰  𝑐 ∧ 𝑐 β‰  π‘Ž)) β†’ βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸))
1312reximi 3088 . . . . . 6 (βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 (({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸) ∧ (π‘Ž β‰  𝑏 ∧ 𝑏 β‰  𝑐 ∧ 𝑐 β‰  π‘Ž)) β†’ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸))
149, 13syl 17 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3) β†’ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸))
152, 4, 6, 14syl3anc 1372 . . . 4 ((𝐺 ∈ UMGraph ∧ (𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3)) β†’ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸))
1615ex 414 . . 3 (𝐺 ∈ UMGraph β†’ ((𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3) β†’ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸)))
1716exlimdvv 1938 . 2 (𝐺 ∈ UMGraph β†’ (βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3) β†’ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸)))
18 simplll 774 . . . . 5 ((((𝐺 ∈ UMGraph ∧ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) ∧ ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸)) β†’ 𝐺 ∈ UMGraph)
19 df-3an 1090 . . . . . . 7 ((π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ↔ ((π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑐 ∈ 𝑉))
2019biimpri 227 . . . . . 6 (((π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑐 ∈ 𝑉) β†’ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉))
2120ad4ant23 752 . . . . 5 ((((𝐺 ∈ UMGraph ∧ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) ∧ ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸)) β†’ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉))
22 simpr 486 . . . . 5 ((((𝐺 ∈ UMGraph ∧ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) ∧ ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸)) β†’ ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸))
238, 7umgr3cyclex 29130 . . . . . 6 ((𝐺 ∈ UMGraph ∧ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸)) β†’ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3 ∧ (π‘β€˜0) = π‘Ž))
24 3simpa 1149 . . . . . . 7 ((𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3 ∧ (π‘β€˜0) = π‘Ž) β†’ (𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3))
25242eximi 1839 . . . . . 6 (βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3 ∧ (π‘β€˜0) = π‘Ž) β†’ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3))
2623, 25syl 17 . . . . 5 ((𝐺 ∈ UMGraph ∧ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸)) β†’ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3))
2718, 21, 22, 26syl3anc 1372 . . . 4 ((((𝐺 ∈ UMGraph ∧ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) ∧ ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸)) β†’ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3))
2827rexlimdva2 3155 . . 3 ((𝐺 ∈ UMGraph ∧ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) β†’ (βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸) β†’ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3)))
2928rexlimdvva 3206 . 2 (𝐺 ∈ UMGraph β†’ (βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸) β†’ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3)))
3017, 29impbid 211 1 (𝐺 ∈ UMGraph β†’ (βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3) ↔ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107   β‰  wne 2944  βˆƒwrex 3074  {cpr 4589   class class class wbr 5106  β€˜cfv 6497  0cc0 11052  3c3 12210  β™―chash 14231  Vtxcvtx 27950  Edgcedg 28001  UPGraphcupgr 28034  UMGraphcumgr 28035  Cyclesccycls 28736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-2o 8414  df-oadd 8417  df-er 8649  df-map 8768  df-pm 8769  df-en 8885  df-dom 8886  df-sdom 8887  df-fin 8888  df-dju 9838  df-card 9876  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-nn 12155  df-2 12217  df-3 12218  df-4 12219  df-n0 12415  df-xnn0 12487  df-z 12501  df-uz 12765  df-fz 13426  df-fzo 13569  df-hash 14232  df-word 14404  df-concat 14460  df-s1 14485  df-s2 14738  df-s3 14739  df-s4 14740  df-edg 28002  df-uhgr 28012  df-upgr 28036  df-umgr 28037  df-wlks 28550  df-trls 28643  df-pths 28667  df-cycls 28738
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator