MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr3v3e3cycl Structured version   Visualization version   GIF version

Theorem umgr3v3e3cycl 27975
Description: If and only if there is a 3-cycle in a multigraph, there are three (different) vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 14-Nov-2017.) (Revised by AV, 12-Feb-2021.)
Hypotheses
Ref Expression
uhgr3cyclex.v 𝑉 = (Vtx‘𝐺)
uhgr3cyclex.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgr3v3e3cycl (𝐺 ∈ UMGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))
Distinct variable groups:   𝑓,𝑝,𝐺   𝐸,𝑎,𝑏,𝑐,𝑓,𝑝   𝐺,𝑎,𝑏,𝑐   𝑉,𝑎,𝑏,𝑐,𝑓,𝑝

Proof of Theorem umgr3v3e3cycl
StepHypRef Expression
1 umgrupgr 26902 . . . . . 6 (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph)
21adantr 484 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) → 𝐺 ∈ UPGraph)
3 simpl 486 . . . . . 6 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → 𝑓(Cycles‘𝐺)𝑝)
43adantl 485 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) → 𝑓(Cycles‘𝐺)𝑝)
5 simpr 488 . . . . . 6 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → (♯‘𝑓) = 3)
65adantl 485 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) → (♯‘𝑓) = 3)
7 uhgr3cyclex.e . . . . . . 7 𝐸 = (Edg‘𝐺)
8 uhgr3cyclex.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
97, 8upgr3v3e3cycl 27971 . . . . . 6 ((𝐺 ∈ UPGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))
10 simpl 486 . . . . . . . . 9 ((({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
1110reximi 3237 . . . . . . . 8 (∃𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)) → ∃𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
1211reximi 3237 . . . . . . 7 (∃𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)) → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
1312reximi 3237 . . . . . 6 (∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
149, 13syl 17 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
152, 4, 6, 14syl3anc 1368 . . . 4 ((𝐺 ∈ UMGraph ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
1615ex 416 . . 3 (𝐺 ∈ UMGraph → ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))
1716exlimdvv 1936 . 2 (𝐺 ∈ UMGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))
18 simplll 774 . . . . 5 ((((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → 𝐺 ∈ UMGraph)
19 df-3an 1086 . . . . . . 7 ((𝑎𝑉𝑏𝑉𝑐𝑉) ↔ ((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉))
2019biimpri 231 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) → (𝑎𝑉𝑏𝑉𝑐𝑉))
2120ad4ant23 752 . . . . 5 ((((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → (𝑎𝑉𝑏𝑉𝑐𝑉))
22 simpr 488 . . . . 5 ((((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
238, 7umgr3cyclex 27974 . . . . . 6 ((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎))
24 3simpa 1145 . . . . . . 7 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎) → (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
25242eximi 1837 . . . . . 6 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
2623, 25syl 17 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
2718, 21, 22, 26syl3anc 1368 . . . 4 ((((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
2827rexlimdva2 3279 . . 3 ((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉)) → (∃𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
2928rexlimdvva 3286 . 2 (𝐺 ∈ UMGraph → (∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
3017, 29impbid 215 1 (𝐺 ∈ UMGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2115  wne 3014  wrex 3134  {cpr 4552   class class class wbr 5052  cfv 6343  0cc0 10535  3c3 11690  chash 13695  Vtxcvtx 26795  Edgcedg 26846  UPGraphcupgr 26879  UMGraphcumgr 26880  Cyclesccycls 27580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8285  df-map 8404  df-pm 8405  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-dju 9327  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-n0 11895  df-xnn0 11965  df-z 11979  df-uz 12241  df-fz 12895  df-fzo 13038  df-hash 13696  df-word 13867  df-concat 13923  df-s1 13950  df-s2 14210  df-s3 14211  df-s4 14212  df-edg 26847  df-uhgr 26857  df-upgr 26881  df-umgr 26882  df-wlks 27395  df-trls 27488  df-pths 27511  df-cycls 27582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator