MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr3v3e3cycl Structured version   Visualization version   GIF version

Theorem umgr3v3e3cycl 28542
Description: If and only if there is a 3-cycle in a multigraph, there are three (different) vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 14-Nov-2017.) (Revised by AV, 12-Feb-2021.)
Hypotheses
Ref Expression
uhgr3cyclex.v 𝑉 = (Vtx‘𝐺)
uhgr3cyclex.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgr3v3e3cycl (𝐺 ∈ UMGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))
Distinct variable groups:   𝑓,𝑝,𝐺   𝐸,𝑎,𝑏,𝑐,𝑓,𝑝   𝐺,𝑎,𝑏,𝑐   𝑉,𝑎,𝑏,𝑐,𝑓,𝑝

Proof of Theorem umgr3v3e3cycl
StepHypRef Expression
1 umgrupgr 27469 . . . . . 6 (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph)
21adantr 481 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) → 𝐺 ∈ UPGraph)
3 simpl 483 . . . . . 6 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → 𝑓(Cycles‘𝐺)𝑝)
43adantl 482 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) → 𝑓(Cycles‘𝐺)𝑝)
5 simpr 485 . . . . . 6 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → (♯‘𝑓) = 3)
65adantl 482 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) → (♯‘𝑓) = 3)
7 uhgr3cyclex.e . . . . . . 7 𝐸 = (Edg‘𝐺)
8 uhgr3cyclex.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
97, 8upgr3v3e3cycl 28538 . . . . . 6 ((𝐺 ∈ UPGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)))
10 simpl 483 . . . . . . . . 9 ((({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
1110reximi 3177 . . . . . . . 8 (∃𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)) → ∃𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
1211reximi 3177 . . . . . . 7 (∃𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)) → ∃𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
1312reximi 3177 . . . . . 6 (∃𝑎𝑉𝑏𝑉𝑐𝑉 (({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) ∧ (𝑎𝑏𝑏𝑐𝑐𝑎)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
149, 13syl 17 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
152, 4, 6, 14syl3anc 1370 . . . 4 ((𝐺 ∈ UMGraph ∧ (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
1615ex 413 . . 3 (𝐺 ∈ UMGraph → ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))
1716exlimdvv 1941 . 2 (𝐺 ∈ UMGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))
18 simplll 772 . . . . 5 ((((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → 𝐺 ∈ UMGraph)
19 df-3an 1088 . . . . . . 7 ((𝑎𝑉𝑏𝑉𝑐𝑉) ↔ ((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉))
2019biimpri 227 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ 𝑐𝑉) → (𝑎𝑉𝑏𝑉𝑐𝑉))
2120ad4ant23 750 . . . . 5 ((((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → (𝑎𝑉𝑏𝑉𝑐𝑉))
22 simpr 485 . . . . 5 ((((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸))
238, 7umgr3cyclex 28541 . . . . . 6 ((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎))
24 3simpa 1147 . . . . . . 7 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎) → (𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
25242eximi 1842 . . . . . 6 (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝑎) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
2623, 25syl 17 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
2718, 21, 22, 26syl3anc 1370 . . . 4 ((((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉)) ∧ 𝑐𝑉) ∧ ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3))
2827rexlimdva2 3218 . . 3 ((𝐺 ∈ UMGraph ∧ (𝑎𝑉𝑏𝑉)) → (∃𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
2928rexlimdvva 3225 . 2 (𝐺 ∈ UMGraph → (∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)))
3017, 29impbid 211 1 (𝐺 ∈ UMGraph → (∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 ({𝑎, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, 𝑎} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wex 1786  wcel 2110  wne 2945  wrex 3067  {cpr 4569   class class class wbr 5079  cfv 6431  0cc0 10870  3c3 12027  chash 14040  Vtxcvtx 27362  Edgcedg 27413  UPGraphcupgr 27446  UMGraphcumgr 27447  Cyclesccycls 28147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-2o 8287  df-oadd 8290  df-er 8479  df-map 8598  df-pm 8599  df-en 8715  df-dom 8716  df-sdom 8717  df-fin 8718  df-dju 9658  df-card 9696  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-n0 12232  df-xnn0 12304  df-z 12318  df-uz 12580  df-fz 13237  df-fzo 13380  df-hash 14041  df-word 14214  df-concat 14270  df-s1 14297  df-s2 14557  df-s3 14558  df-s4 14559  df-edg 27414  df-uhgr 27424  df-upgr 27448  df-umgr 27449  df-wlks 27962  df-trls 28055  df-pths 28078  df-cycls 28149
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator