MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr3v3e3cycl Structured version   Visualization version   GIF version

Theorem umgr3v3e3cycl 30050
Description: If and only if there is a 3-cycle in a multigraph, there are three (different) vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 14-Nov-2017.) (Revised by AV, 12-Feb-2021.)
Hypotheses
Ref Expression
uhgr3cyclex.v 𝑉 = (Vtxβ€˜πΊ)
uhgr3cyclex.e 𝐸 = (Edgβ€˜πΊ)
Assertion
Ref Expression
umgr3v3e3cycl (𝐺 ∈ UMGraph β†’ (βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3) ↔ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸)))
Distinct variable groups:   𝑓,𝑝,𝐺   𝐸,π‘Ž,𝑏,𝑐,𝑓,𝑝   𝐺,π‘Ž,𝑏,𝑐   𝑉,π‘Ž,𝑏,𝑐,𝑓,𝑝

Proof of Theorem umgr3v3e3cycl
StepHypRef Expression
1 umgrupgr 28972 . . . . . 6 (𝐺 ∈ UMGraph β†’ 𝐺 ∈ UPGraph)
21adantr 479 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3)) β†’ 𝐺 ∈ UPGraph)
3 simpl 481 . . . . . 6 ((𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3) β†’ 𝑓(Cyclesβ€˜πΊ)𝑝)
43adantl 480 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3)) β†’ 𝑓(Cyclesβ€˜πΊ)𝑝)
5 simpr 483 . . . . . 6 ((𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3) β†’ (β™―β€˜π‘“) = 3)
65adantl 480 . . . . 5 ((𝐺 ∈ UMGraph ∧ (𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3)) β†’ (β™―β€˜π‘“) = 3)
7 uhgr3cyclex.e . . . . . . 7 𝐸 = (Edgβ€˜πΊ)
8 uhgr3cyclex.v . . . . . . 7 𝑉 = (Vtxβ€˜πΊ)
97, 8upgr3v3e3cycl 30046 . . . . . 6 ((𝐺 ∈ UPGraph ∧ 𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3) β†’ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 (({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸) ∧ (π‘Ž β‰  𝑏 ∧ 𝑏 β‰  𝑐 ∧ 𝑐 β‰  π‘Ž)))
10 simpl 481 . . . . . . . . 9 ((({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸) ∧ (π‘Ž β‰  𝑏 ∧ 𝑏 β‰  𝑐 ∧ 𝑐 β‰  π‘Ž)) β†’ ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸))
1110reximi 3074 . . . . . . . 8 (βˆƒπ‘ ∈ 𝑉 (({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸) ∧ (π‘Ž β‰  𝑏 ∧ 𝑏 β‰  𝑐 ∧ 𝑐 β‰  π‘Ž)) β†’ βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸))
1211reximi 3074 . . . . . . 7 (βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 (({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸) ∧ (π‘Ž β‰  𝑏 ∧ 𝑏 β‰  𝑐 ∧ 𝑐 β‰  π‘Ž)) β†’ βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸))
1312reximi 3074 . . . . . 6 (βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 (({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸) ∧ (π‘Ž β‰  𝑏 ∧ 𝑏 β‰  𝑐 ∧ 𝑐 β‰  π‘Ž)) β†’ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸))
149, 13syl 17 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3) β†’ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸))
152, 4, 6, 14syl3anc 1368 . . . 4 ((𝐺 ∈ UMGraph ∧ (𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3)) β†’ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸))
1615ex 411 . . 3 (𝐺 ∈ UMGraph β†’ ((𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3) β†’ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸)))
1716exlimdvv 1929 . 2 (𝐺 ∈ UMGraph β†’ (βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3) β†’ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸)))
18 simplll 773 . . . . 5 ((((𝐺 ∈ UMGraph ∧ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) ∧ ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸)) β†’ 𝐺 ∈ UMGraph)
19 df-3an 1086 . . . . . . 7 ((π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ↔ ((π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑐 ∈ 𝑉))
2019biimpri 227 . . . . . 6 (((π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑐 ∈ 𝑉) β†’ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉))
2120ad4ant23 751 . . . . 5 ((((𝐺 ∈ UMGraph ∧ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) ∧ ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸)) β†’ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉))
22 simpr 483 . . . . 5 ((((𝐺 ∈ UMGraph ∧ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) ∧ ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸)) β†’ ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸))
238, 7umgr3cyclex 30049 . . . . . 6 ((𝐺 ∈ UMGraph ∧ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸)) β†’ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3 ∧ (π‘β€˜0) = π‘Ž))
24 3simpa 1145 . . . . . . 7 ((𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3 ∧ (π‘β€˜0) = π‘Ž) β†’ (𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3))
25242eximi 1830 . . . . . 6 (βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3 ∧ (π‘β€˜0) = π‘Ž) β†’ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3))
2623, 25syl 17 . . . . 5 ((𝐺 ∈ UMGraph ∧ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸)) β†’ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3))
2718, 21, 22, 26syl3anc 1368 . . . 4 ((((𝐺 ∈ UMGraph ∧ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ 𝑐 ∈ 𝑉) ∧ ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸)) β†’ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3))
2827rexlimdva2 3147 . . 3 ((𝐺 ∈ UMGraph ∧ (π‘Ž ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) β†’ (βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸) β†’ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3)))
2928rexlimdvva 3202 . 2 (𝐺 ∈ UMGraph β†’ (βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸) β†’ βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3)))
3017, 29impbid 211 1 (𝐺 ∈ UMGraph β†’ (βˆƒπ‘“βˆƒπ‘(𝑓(Cyclesβ€˜πΊ)𝑝 ∧ (β™―β€˜π‘“) = 3) ↔ βˆƒπ‘Ž ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 βˆƒπ‘ ∈ 𝑉 ({π‘Ž, 𝑏} ∈ 𝐸 ∧ {𝑏, 𝑐} ∈ 𝐸 ∧ {𝑐, π‘Ž} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098   β‰  wne 2930  βˆƒwrex 3060  {cpr 4631   class class class wbr 5148  β€˜cfv 6547  0cc0 11138  3c3 12298  β™―chash 14321  Vtxcvtx 28865  Edgcedg 28916  UPGraphcupgr 28949  UMGraphcumgr 28950  Cyclesccycls 29655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8723  df-map 8845  df-pm 8846  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-n0 12503  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13517  df-fzo 13660  df-hash 14322  df-word 14497  df-concat 14553  df-s1 14578  df-s2 14831  df-s3 14832  df-s4 14833  df-edg 28917  df-uhgr 28927  df-upgr 28951  df-umgr 28952  df-wlks 29469  df-trls 29562  df-pths 29586  df-cycls 29657
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator