Proof of Theorem mbfi1fseqlem3
| Step | Hyp | Ref
| Expression |
| 1 | | mbfi1fseq.1 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ MblFn) |
| 2 | | mbfi1fseq.2 |
. . . 4
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
| 3 | | mbfi1fseq.3 |
. . . 4
⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦
((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) |
| 4 | | mbfi1fseq.4 |
. . . 4
⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) |
| 5 | 1, 2, 3, 4 | mbfi1fseqlem2 25624 |
. . 3
⊢ (𝐴 ∈ ℕ → (𝐺‘𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) |
| 6 | 5 | adantl 481 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝐺‘𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) |
| 7 | | rge0ssre 13424 |
. . . . . . . . . . . . . . . . . 18
⊢
(0[,)+∞) ⊆ ℝ |
| 8 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈
ℝ) |
| 9 | | ffvelcdm 7056 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ 𝑦 ∈ ℝ)
→ (𝐹‘𝑦) ∈
(0[,)+∞)) |
| 10 | 2, 8, 9 | syl2an 596 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ (0[,)+∞)) |
| 11 | 7, 10 | sselid 3947 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ ℝ) |
| 12 | | 2nn 12266 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℕ |
| 13 | | nnnn0 12456 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) |
| 14 | | nnexpcl 14046 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((2
∈ ℕ ∧ 𝑚
∈ ℕ0) → (2↑𝑚) ∈ ℕ) |
| 15 | 12, 13, 14 | sylancr 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ ℕ →
(2↑𝑚) ∈
ℕ) |
| 16 | 15 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈
ℕ) |
| 17 | 16 | nnred 12208 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈
ℝ) |
| 18 | 11, 17 | remulcld 11211 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ) |
| 19 | | reflcl 13765 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ →
(⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) |
| 20 | 18, 19 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) →
(⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) |
| 21 | 20, 16 | nndivred 12247 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) →
((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ) |
| 22 | 21 | ralrimivva 3181 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ) |
| 23 | 3 | fmpo 8050 |
. . . . . . . . . . . . 13
⊢
(∀𝑚 ∈
ℕ ∀𝑦 ∈
ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ↔ 𝐽:(ℕ ×
ℝ)⟶ℝ) |
| 24 | 22, 23 | sylib 218 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽:(ℕ ×
ℝ)⟶ℝ) |
| 25 | | fovcdm 7562 |
. . . . . . . . . . . 12
⊢ ((𝐽:(ℕ ×
ℝ)⟶ℝ ∧ 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ) |
| 26 | 24, 25 | syl3an1 1163 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ) |
| 27 | 26 | 3expa 1118 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ) |
| 28 | | nnre 12200 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ) |
| 29 | 28 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ) |
| 30 | | nnnn0 12456 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℕ0) |
| 31 | | nnexpcl 14046 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℕ ∧ 𝐴
∈ ℕ0) → (2↑𝐴) ∈ ℕ) |
| 32 | 12, 30, 31 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ →
(2↑𝐴) ∈
ℕ) |
| 33 | 32 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈
ℕ) |
| 34 | | nnre 12200 |
. . . . . . . . . . . 12
⊢
((2↑𝐴) ∈
ℕ → (2↑𝐴)
∈ ℝ) |
| 35 | | nngt0 12224 |
. . . . . . . . . . . 12
⊢
((2↑𝐴) ∈
ℕ → 0 < (2↑𝐴)) |
| 36 | 34, 35 | jca 511 |
. . . . . . . . . . 11
⊢
((2↑𝐴) ∈
ℕ → ((2↑𝐴)
∈ ℝ ∧ 0 < (2↑𝐴))) |
| 37 | 33, 36 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((2↑𝐴) ∈ ℝ ∧ 0 <
(2↑𝐴))) |
| 38 | | lemul1 12041 |
. . . . . . . . . 10
⊢ (((𝐴𝐽𝑥) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((2↑𝐴) ∈ ℝ ∧ 0 <
(2↑𝐴))) → ((𝐴𝐽𝑥) ≤ 𝐴 ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴)))) |
| 39 | 27, 29, 37, 38 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐴𝐽𝑥) ≤ 𝐴 ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴)))) |
| 40 | 39 | biimpa 476 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴))) |
| 41 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 = 𝐴 ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) |
| 42 | 41 | fveq2d 6865 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 = 𝐴 ∧ 𝑦 = 𝑥) → (𝐹‘𝑦) = (𝐹‘𝑥)) |
| 43 | | simpl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 = 𝐴 ∧ 𝑦 = 𝑥) → 𝑚 = 𝐴) |
| 44 | 43 | oveq2d 7406 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 = 𝐴 ∧ 𝑦 = 𝑥) → (2↑𝑚) = (2↑𝐴)) |
| 45 | 42, 44 | oveq12d 7408 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 = 𝐴 ∧ 𝑦 = 𝑥) → ((𝐹‘𝑦) · (2↑𝑚)) = ((𝐹‘𝑥) · (2↑𝐴))) |
| 46 | 45 | fveq2d 6865 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 = 𝐴 ∧ 𝑦 = 𝑥) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) = (⌊‘((𝐹‘𝑥) · (2↑𝐴)))) |
| 47 | 46, 44 | oveq12d 7408 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 = 𝐴 ∧ 𝑦 = 𝑥) → ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹‘𝑥) · (2↑𝐴))) / (2↑𝐴))) |
| 48 | | ovex 7423 |
. . . . . . . . . . . . . . 15
⊢
((⌊‘((𝐹‘𝑥) · (2↑𝐴))) / (2↑𝐴)) ∈ V |
| 49 | 47, 3, 48 | ovmpoa 7547 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) = ((⌊‘((𝐹‘𝑥) · (2↑𝐴))) / (2↑𝐴))) |
| 50 | 49 | ad4ant23 753 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) = ((⌊‘((𝐹‘𝑥) · (2↑𝐴))) / (2↑𝐴))) |
| 51 | 50 | oveq1d 7405 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) = (((⌊‘((𝐹‘𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑𝐴))) |
| 52 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → 𝐹:ℝ⟶(0[,)+∞)) |
| 53 | 52 | ffvelcdmda 7059 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ (0[,)+∞)) |
| 54 | | elrege0 13422 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) |
| 55 | 53, 54 | sylib 218 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) |
| 56 | 55 | simpld 494 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
| 57 | 33 | nnred 12208 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈
ℝ) |
| 58 | 56, 57 | remulcld 11211 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) · (2↑𝐴)) ∈ ℝ) |
| 59 | 33 | nnnn0d 12510 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈
ℕ0) |
| 60 | 59 | nn0ge0d 12513 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ (2↑𝐴)) |
| 61 | | mulge0 11703 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥)) ∧ ((2↑𝐴) ∈ ℝ ∧ 0 ≤ (2↑𝐴))) → 0 ≤ ((𝐹‘𝑥) · (2↑𝐴))) |
| 62 | 55, 57, 60, 61 | syl12anc 836 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ ((𝐹‘𝑥) · (2↑𝐴))) |
| 63 | | flge0nn0 13789 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑥) · (2↑𝐴)) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑥) · (2↑𝐴))) → (⌊‘((𝐹‘𝑥) · (2↑𝐴))) ∈
ℕ0) |
| 64 | 58, 62, 63 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝐹‘𝑥) · (2↑𝐴))) ∈
ℕ0) |
| 65 | 64 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (⌊‘((𝐹‘𝑥) · (2↑𝐴))) ∈
ℕ0) |
| 66 | 65 | nn0cnd 12512 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (⌊‘((𝐹‘𝑥) · (2↑𝐴))) ∈ ℂ) |
| 67 | 33 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (2↑𝐴) ∈ ℕ) |
| 68 | 67 | nncnd 12209 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (2↑𝐴) ∈ ℂ) |
| 69 | 67 | nnne0d 12243 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (2↑𝐴) ≠ 0) |
| 70 | 66, 68, 69 | divcan1d 11966 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (((⌊‘((𝐹‘𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑𝐴)) = (⌊‘((𝐹‘𝑥) · (2↑𝐴)))) |
| 71 | 51, 70 | eqtrd 2765 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) = (⌊‘((𝐹‘𝑥) · (2↑𝐴)))) |
| 72 | 71, 65 | eqeltrd 2829 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ∈
ℕ0) |
| 73 | | nn0uz 12842 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
| 74 | 72, 73 | eleqtrdi 2839 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ∈
(ℤ≥‘0)) |
| 75 | | nnmulcl 12217 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧
(2↑𝐴) ∈ ℕ)
→ (𝐴 ·
(2↑𝐴)) ∈
ℕ) |
| 76 | 32, 75 | mpdan 687 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ → (𝐴 · (2↑𝐴)) ∈
ℕ) |
| 77 | 76 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ ℕ) |
| 78 | 77 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴 · (2↑𝐴)) ∈ ℕ) |
| 79 | 78 | nnzd 12563 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴 · (2↑𝐴)) ∈ ℤ) |
| 80 | | elfz5 13484 |
. . . . . . . . 9
⊢ ((((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (ℤ≥‘0)
∧ (𝐴 ·
(2↑𝐴)) ∈ ℤ)
→ (((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴)))) |
| 81 | 74, 79, 80 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴)))) |
| 82 | 40, 81 | mpbird 257 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) |
| 83 | | oveq1 7397 |
. . . . . . . 8
⊢ (𝑚 = ((𝐴𝐽𝑥) · (2↑𝐴)) → (𝑚 / (2↑𝐴)) = (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴))) |
| 84 | | eqid 2730 |
. . . . . . . 8
⊢ (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) = (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) |
| 85 | | ovex 7423 |
. . . . . . . 8
⊢ (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)) ∈ V |
| 86 | 83, 84, 85 | fvmpt 6971 |
. . . . . . 7
⊢ (((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) = (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴))) |
| 87 | 82, 86 | syl 17 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) = (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴))) |
| 88 | 27 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) ∈ ℝ) |
| 89 | 88 | recnd 11209 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) ∈ ℂ) |
| 90 | 89, 68, 69 | divcan4d 11971 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)) = (𝐴𝐽𝑥)) |
| 91 | 87, 90 | eqtrd 2765 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) = (𝐴𝐽𝑥)) |
| 92 | | elfznn0 13588 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) → 𝑚 ∈ ℕ0) |
| 93 | 92 | nn0red 12511 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) → 𝑚 ∈ ℝ) |
| 94 | 32 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (2↑𝐴) ∈
ℕ) |
| 95 | | nndivre 12234 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℝ ∧
(2↑𝐴) ∈ ℕ)
→ (𝑚 / (2↑𝐴)) ∈
ℝ) |
| 96 | 93, 94, 95 | syl2anr 597 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐴 · (2↑𝐴)))) → (𝑚 / (2↑𝐴)) ∈ ℝ) |
| 97 | 96 | fmpttd 7090 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))):(0...(𝐴 · (2↑𝐴)))⟶ℝ) |
| 98 | 97 | ffnd 6692 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴)))) |
| 99 | 98 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴)))) |
| 100 | 99 | adantr 480 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴)))) |
| 101 | | fnfvelrn 7055 |
. . . . . 6
⊢ (((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))) ∧ ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
| 102 | 100, 82, 101 | syl2anc 584 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
| 103 | 91, 102 | eqeltrrd 2830 |
. . . 4
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
| 104 | 77 | nnnn0d 12510 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈
ℕ0) |
| 105 | 104, 73 | eleqtrdi 2839 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈
(ℤ≥‘0)) |
| 106 | | eluzfz2 13500 |
. . . . . . . . 9
⊢ ((𝐴 · (2↑𝐴)) ∈
(ℤ≥‘0) → (𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) |
| 107 | 105, 106 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) |
| 108 | | oveq1 7397 |
. . . . . . . . 9
⊢ (𝑚 = (𝐴 · (2↑𝐴)) → (𝑚 / (2↑𝐴)) = ((𝐴 · (2↑𝐴)) / (2↑𝐴))) |
| 109 | | ovex 7423 |
. . . . . . . . 9
⊢ ((𝐴 · (2↑𝐴)) / (2↑𝐴)) ∈ V |
| 110 | 108, 84, 109 | fvmpt 6971 |
. . . . . . . 8
⊢ ((𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) = ((𝐴 · (2↑𝐴)) / (2↑𝐴))) |
| 111 | 107, 110 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) = ((𝐴 · (2↑𝐴)) / (2↑𝐴))) |
| 112 | 29 | recnd 11209 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℂ) |
| 113 | 33 | nncnd 12209 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈
ℂ) |
| 114 | 33 | nnne0d 12243 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ≠ 0) |
| 115 | 112, 113,
114 | divcan4d 11971 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐴 · (2↑𝐴)) / (2↑𝐴)) = 𝐴) |
| 116 | 111, 115 | eqtrd 2765 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) = 𝐴) |
| 117 | | fnfvelrn 7055 |
. . . . . . 7
⊢ (((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))) ∧ (𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
| 118 | 99, 107, 117 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
| 119 | 116, 118 | eqeltrrd 2830 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
| 120 | 119 | adantr 480 |
. . . 4
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐴𝐽𝑥) ≤ 𝐴) → 𝐴 ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
| 121 | 103, 120 | ifclda 4527 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
| 122 | | eluzfz1 13499 |
. . . . . . 7
⊢ ((𝐴 · (2↑𝐴)) ∈
(ℤ≥‘0) → 0 ∈ (0...(𝐴 · (2↑𝐴)))) |
| 123 | 105, 122 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ∈ (0...(𝐴 · (2↑𝐴)))) |
| 124 | | oveq1 7397 |
. . . . . . 7
⊢ (𝑚 = 0 → (𝑚 / (2↑𝐴)) = (0 / (2↑𝐴))) |
| 125 | | ovex 7423 |
. . . . . . 7
⊢ (0 /
(2↑𝐴)) ∈
V |
| 126 | 124, 84, 125 | fvmpt 6971 |
. . . . . 6
⊢ (0 ∈
(0...(𝐴 ·
(2↑𝐴))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) = (0 / (2↑𝐴))) |
| 127 | 123, 126 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) = (0 / (2↑𝐴))) |
| 128 | | nncn 12201 |
. . . . . . 7
⊢
((2↑𝐴) ∈
ℕ → (2↑𝐴)
∈ ℂ) |
| 129 | | nnne0 12227 |
. . . . . . 7
⊢
((2↑𝐴) ∈
ℕ → (2↑𝐴)
≠ 0) |
| 130 | 128, 129 | div0d 11964 |
. . . . . 6
⊢
((2↑𝐴) ∈
ℕ → (0 / (2↑𝐴)) = 0) |
| 131 | 33, 130 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (0 / (2↑𝐴)) = 0) |
| 132 | 127, 131 | eqtrd 2765 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) = 0) |
| 133 | | fnfvelrn 7055 |
. . . . 5
⊢ (((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))) ∧ 0 ∈ (0...(𝐴 · (2↑𝐴)))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
| 134 | 99, 123, 133 | syl2anc 584 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
| 135 | 132, 134 | eqeltrrd 2830 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
| 136 | 121, 135 | ifcld 4538 |
. 2
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
| 137 | 6, 136 | fmpt3d 7091 |
1
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝐺‘𝐴):ℝ⟶ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |