MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem3 Structured version   Visualization version   GIF version

Theorem mbfi1fseqlem3 25646
Description: Lemma for mbfi1fseq 25650. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
mbfi1fseq.3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
mbfi1fseq.4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
Assertion
Ref Expression
mbfi1fseqlem3 ((𝜑𝐴 ∈ ℕ) → (𝐺𝐴):ℝ⟶ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑥,𝐺   𝑚,𝐽   𝜑,𝑚,𝑥,𝑦   𝐴,𝑚,𝑥,𝑦
Allowed substitution hints:   𝐺(𝑦,𝑚)   𝐽(𝑥,𝑦)

Proof of Theorem mbfi1fseqlem3
StepHypRef Expression
1 mbfi1fseq.1 . . . 4 (𝜑𝐹 ∈ MblFn)
2 mbfi1fseq.2 . . . 4 (𝜑𝐹:ℝ⟶(0[,)+∞))
3 mbfi1fseq.3 . . . 4 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
4 mbfi1fseq.4 . . . 4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
51, 2, 3, 4mbfi1fseqlem2 25645 . . 3 (𝐴 ∈ ℕ → (𝐺𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)))
65adantl 481 . 2 ((𝜑𝐴 ∈ ℕ) → (𝐺𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)))
7 rge0ssre 13358 . . . . . . . . . . . . . . . . . 18 (0[,)+∞) ⊆ ℝ
8 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
9 ffvelcdm 7020 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℝ⟶(0[,)+∞) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,)+∞))
102, 8, 9syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ (0[,)+∞))
117, 10sselid 3928 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ ℝ)
12 2nn 12205 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℕ
13 nnnn0 12395 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
14 nnexpcl 13983 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
1512, 13, 14sylancr 587 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ)
1615ad2antrl 728 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ)
1716nnred 12147 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℝ)
1811, 17remulcld 11149 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹𝑦) · (2↑𝑚)) ∈ ℝ)
19 reflcl 13702 . . . . . . . . . . . . . . . 16 (((𝐹𝑦) · (2↑𝑚)) ∈ ℝ → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
2018, 19syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
2120, 16nndivred 12186 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
2221ralrimivva 3176 . . . . . . . . . . . . 13 (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
233fmpo 8006 . . . . . . . . . . . . 13 (∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ↔ 𝐽:(ℕ × ℝ)⟶ℝ)
2422, 23sylib 218 . . . . . . . . . . . 12 (𝜑𝐽:(ℕ × ℝ)⟶ℝ)
25 fovcdm 7522 . . . . . . . . . . . 12 ((𝐽:(ℕ × ℝ)⟶ℝ ∧ 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ)
2624, 25syl3an1 1163 . . . . . . . . . . 11 ((𝜑𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ)
27263expa 1118 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ)
28 nnre 12139 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
2928ad2antlr 727 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
30 nnnn0 12395 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
31 nnexpcl 13983 . . . . . . . . . . . . 13 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (2↑𝐴) ∈ ℕ)
3212, 30, 31sylancr 587 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (2↑𝐴) ∈ ℕ)
3332ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℕ)
34 nnre 12139 . . . . . . . . . . . 12 ((2↑𝐴) ∈ ℕ → (2↑𝐴) ∈ ℝ)
35 nngt0 12163 . . . . . . . . . . . 12 ((2↑𝐴) ∈ ℕ → 0 < (2↑𝐴))
3634, 35jca 511 . . . . . . . . . . 11 ((2↑𝐴) ∈ ℕ → ((2↑𝐴) ∈ ℝ ∧ 0 < (2↑𝐴)))
3733, 36syl 17 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((2↑𝐴) ∈ ℝ ∧ 0 < (2↑𝐴)))
38 lemul1 11980 . . . . . . . . . 10 (((𝐴𝐽𝑥) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((2↑𝐴) ∈ ℝ ∧ 0 < (2↑𝐴))) → ((𝐴𝐽𝑥) ≤ 𝐴 ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴))))
3927, 29, 37, 38syl3anc 1373 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐴𝐽𝑥) ≤ 𝐴 ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴))))
4039biimpa 476 . . . . . . . 8 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴)))
41 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑚 = 𝐴𝑦 = 𝑥) → 𝑦 = 𝑥)
4241fveq2d 6832 . . . . . . . . . . . . . . . . . 18 ((𝑚 = 𝐴𝑦 = 𝑥) → (𝐹𝑦) = (𝐹𝑥))
43 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑚 = 𝐴𝑦 = 𝑥) → 𝑚 = 𝐴)
4443oveq2d 7368 . . . . . . . . . . . . . . . . . 18 ((𝑚 = 𝐴𝑦 = 𝑥) → (2↑𝑚) = (2↑𝐴))
4542, 44oveq12d 7370 . . . . . . . . . . . . . . . . 17 ((𝑚 = 𝐴𝑦 = 𝑥) → ((𝐹𝑦) · (2↑𝑚)) = ((𝐹𝑥) · (2↑𝐴)))
4645fveq2d 6832 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝐴𝑦 = 𝑥) → (⌊‘((𝐹𝑦) · (2↑𝑚))) = (⌊‘((𝐹𝑥) · (2↑𝐴))))
4746, 44oveq12d 7370 . . . . . . . . . . . . . . 15 ((𝑚 = 𝐴𝑦 = 𝑥) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
48 ovex 7385 . . . . . . . . . . . . . . 15 ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) ∈ V
4947, 3, 48ovmpoa 7507 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
5049ad4ant23 753 . . . . . . . . . . . . 13 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
5150oveq1d 7367 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) = (((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑𝐴)))
522adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐴 ∈ ℕ) → 𝐹:ℝ⟶(0[,)+∞))
5352ffvelcdmda 7023 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
54 elrege0 13356 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
5553, 54sylib 218 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
5655simpld 494 . . . . . . . . . . . . . . . . 17 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
5733nnred 12147 . . . . . . . . . . . . . . . . 17 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℝ)
5856, 57remulcld 11149 . . . . . . . . . . . . . . . 16 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) · (2↑𝐴)) ∈ ℝ)
5933nnnn0d 12449 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℕ0)
6059nn0ge0d 12452 . . . . . . . . . . . . . . . . 17 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ (2↑𝐴))
61 mulge0 11642 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)) ∧ ((2↑𝐴) ∈ ℝ ∧ 0 ≤ (2↑𝐴))) → 0 ≤ ((𝐹𝑥) · (2↑𝐴)))
6255, 57, 60, 61syl12anc 836 . . . . . . . . . . . . . . . 16 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ ((𝐹𝑥) · (2↑𝐴)))
63 flge0nn0 13726 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) · (2↑𝐴)) ∈ ℝ ∧ 0 ≤ ((𝐹𝑥) · (2↑𝐴))) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℕ0)
6458, 62, 63syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℕ0)
6564adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℕ0)
6665nn0cnd 12451 . . . . . . . . . . . . 13 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℂ)
6733adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (2↑𝐴) ∈ ℕ)
6867nncnd 12148 . . . . . . . . . . . . 13 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (2↑𝐴) ∈ ℂ)
6967nnne0d 12182 . . . . . . . . . . . . 13 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (2↑𝐴) ≠ 0)
7066, 68, 69divcan1d 11905 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑𝐴)) = (⌊‘((𝐹𝑥) · (2↑𝐴))))
7151, 70eqtrd 2768 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) = (⌊‘((𝐹𝑥) · (2↑𝐴))))
7271, 65eqeltrd 2833 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ ℕ0)
73 nn0uz 12776 . . . . . . . . . 10 0 = (ℤ‘0)
7472, 73eleqtrdi 2843 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (ℤ‘0))
75 nnmulcl 12156 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ (2↑𝐴) ∈ ℕ) → (𝐴 · (2↑𝐴)) ∈ ℕ)
7632, 75mpdan 687 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (𝐴 · (2↑𝐴)) ∈ ℕ)
7776ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ ℕ)
7877adantr 480 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴 · (2↑𝐴)) ∈ ℕ)
7978nnzd 12501 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴 · (2↑𝐴)) ∈ ℤ)
80 elfz5 13418 . . . . . . . . 9 ((((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (ℤ‘0) ∧ (𝐴 · (2↑𝐴)) ∈ ℤ) → (((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴))))
8174, 79, 80syl2anc 584 . . . . . . . 8 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴))))
8240, 81mpbird 257 . . . . . . 7 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))))
83 oveq1 7359 . . . . . . . 8 (𝑚 = ((𝐴𝐽𝑥) · (2↑𝐴)) → (𝑚 / (2↑𝐴)) = (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)))
84 eqid 2733 . . . . . . . 8 (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) = (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))
85 ovex 7385 . . . . . . . 8 (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)) ∈ V
8683, 84, 85fvmpt 6935 . . . . . . 7 (((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) = (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)))
8782, 86syl 17 . . . . . 6 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) = (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)))
8827adantr 480 . . . . . . . 8 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) ∈ ℝ)
8988recnd 11147 . . . . . . 7 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) ∈ ℂ)
9089, 68, 69divcan4d 11910 . . . . . 6 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)) = (𝐴𝐽𝑥))
9187, 90eqtrd 2768 . . . . 5 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) = (𝐴𝐽𝑥))
92 elfznn0 13522 . . . . . . . . . . . 12 (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) → 𝑚 ∈ ℕ0)
9392nn0red 12450 . . . . . . . . . . 11 (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) → 𝑚 ∈ ℝ)
9432adantl 481 . . . . . . . . . . 11 ((𝜑𝐴 ∈ ℕ) → (2↑𝐴) ∈ ℕ)
95 nndivre 12173 . . . . . . . . . . 11 ((𝑚 ∈ ℝ ∧ (2↑𝐴) ∈ ℕ) → (𝑚 / (2↑𝐴)) ∈ ℝ)
9693, 94, 95syl2anr 597 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐴 · (2↑𝐴)))) → (𝑚 / (2↑𝐴)) ∈ ℝ)
9796fmpttd 7054 . . . . . . . . 9 ((𝜑𝐴 ∈ ℕ) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))):(0...(𝐴 · (2↑𝐴)))⟶ℝ)
9897ffnd 6657 . . . . . . . 8 ((𝜑𝐴 ∈ ℕ) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))))
9998adantr 480 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))))
10099adantr 480 . . . . . 6 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))))
101 fnfvelrn 7019 . . . . . 6 (((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))) ∧ ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
102100, 82, 101syl2anc 584 . . . . 5 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
10391, 102eqeltrrd 2834 . . . 4 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
10477nnnn0d 12449 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ ℕ0)
105104, 73eleqtrdi 2843 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ (ℤ‘0))
106 eluzfz2 13434 . . . . . . . . 9 ((𝐴 · (2↑𝐴)) ∈ (ℤ‘0) → (𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))))
107105, 106syl 17 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))))
108 oveq1 7359 . . . . . . . . 9 (𝑚 = (𝐴 · (2↑𝐴)) → (𝑚 / (2↑𝐴)) = ((𝐴 · (2↑𝐴)) / (2↑𝐴)))
109 ovex 7385 . . . . . . . . 9 ((𝐴 · (2↑𝐴)) / (2↑𝐴)) ∈ V
110108, 84, 109fvmpt 6935 . . . . . . . 8 ((𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) = ((𝐴 · (2↑𝐴)) / (2↑𝐴)))
111107, 110syl 17 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) = ((𝐴 · (2↑𝐴)) / (2↑𝐴)))
11229recnd 11147 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℂ)
11333nncnd 12148 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℂ)
11433nnne0d 12182 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ≠ 0)
115112, 113, 114divcan4d 11910 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐴 · (2↑𝐴)) / (2↑𝐴)) = 𝐴)
116111, 115eqtrd 2768 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) = 𝐴)
117 fnfvelrn 7019 . . . . . . 7 (((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))) ∧ (𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
11899, 107, 117syl2anc 584 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
119116, 118eqeltrrd 2834 . . . . 5 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
120119adantr 480 . . . 4 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐴𝐽𝑥) ≤ 𝐴) → 𝐴 ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
121103, 120ifclda 4510 . . 3 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
122 eluzfz1 13433 . . . . . . 7 ((𝐴 · (2↑𝐴)) ∈ (ℤ‘0) → 0 ∈ (0...(𝐴 · (2↑𝐴))))
123105, 122syl 17 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ∈ (0...(𝐴 · (2↑𝐴))))
124 oveq1 7359 . . . . . . 7 (𝑚 = 0 → (𝑚 / (2↑𝐴)) = (0 / (2↑𝐴)))
125 ovex 7385 . . . . . . 7 (0 / (2↑𝐴)) ∈ V
126124, 84, 125fvmpt 6935 . . . . . 6 (0 ∈ (0...(𝐴 · (2↑𝐴))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) = (0 / (2↑𝐴)))
127123, 126syl 17 . . . . 5 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) = (0 / (2↑𝐴)))
128 nncn 12140 . . . . . . 7 ((2↑𝐴) ∈ ℕ → (2↑𝐴) ∈ ℂ)
129 nnne0 12166 . . . . . . 7 ((2↑𝐴) ∈ ℕ → (2↑𝐴) ≠ 0)
130128, 129div0d 11903 . . . . . 6 ((2↑𝐴) ∈ ℕ → (0 / (2↑𝐴)) = 0)
13133, 130syl 17 . . . . 5 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (0 / (2↑𝐴)) = 0)
132127, 131eqtrd 2768 . . . 4 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) = 0)
133 fnfvelrn 7019 . . . . 5 (((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))) ∧ 0 ∈ (0...(𝐴 · (2↑𝐴)))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
13499, 123, 133syl2anc 584 . . . 4 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
135132, 134eqeltrrd 2834 . . 3 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
136121, 135ifcld 4521 . 2 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
1376, 136fmpt3d 7055 1 ((𝜑𝐴 ∈ ℕ) → (𝐺𝐴):ℝ⟶ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  ifcif 4474   class class class wbr 5093  cmpt 5174   × cxp 5617  ran crn 5620   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  cmpo 7354  cr 11012  0cc0 11013   · cmul 11018  +∞cpnf 11150   < clt 11153  cle 11154  -cneg 11352   / cdiv 11781  cn 12132  2c2 12187  0cn0 12388  cz 12475  cuz 12738  [,)cico 13249  [,]cicc 13250  ...cfz 13409  cfl 13696  cexp 13970  MblFncmbf 25543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-ico 13253  df-fz 13410  df-fl 13698  df-seq 13911  df-exp 13971
This theorem is referenced by:  mbfi1fseqlem4  25647
  Copyright terms: Public domain W3C validator