Proof of Theorem mbfi1fseqlem3
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | mbfi1fseq.1 | . . . 4
⊢ (𝜑 → 𝐹 ∈ MblFn) | 
| 2 |  | mbfi1fseq.2 | . . . 4
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) | 
| 3 |  | mbfi1fseq.3 | . . . 4
⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦
((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) | 
| 4 |  | mbfi1fseq.4 | . . . 4
⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) | 
| 5 | 1, 2, 3, 4 | mbfi1fseqlem2 25751 | . . 3
⊢ (𝐴 ∈ ℕ → (𝐺‘𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) | 
| 6 | 5 | adantl 481 | . 2
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝐺‘𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) | 
| 7 |  | rge0ssre 13496 | . . . . . . . . . . . . . . . . . 18
⊢
(0[,)+∞) ⊆ ℝ | 
| 8 |  | simpr 484 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈
ℝ) | 
| 9 |  | ffvelcdm 7101 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ 𝑦 ∈ ℝ)
→ (𝐹‘𝑦) ∈
(0[,)+∞)) | 
| 10 | 2, 8, 9 | syl2an 596 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ (0[,)+∞)) | 
| 11 | 7, 10 | sselid 3981 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ ℝ) | 
| 12 |  | 2nn 12339 | . . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℕ | 
| 13 |  | nnnn0 12533 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) | 
| 14 |  | nnexpcl 14115 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((2
∈ ℕ ∧ 𝑚
∈ ℕ0) → (2↑𝑚) ∈ ℕ) | 
| 15 | 12, 13, 14 | sylancr 587 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ ℕ →
(2↑𝑚) ∈
ℕ) | 
| 16 | 15 | ad2antrl 728 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈
ℕ) | 
| 17 | 16 | nnred 12281 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈
ℝ) | 
| 18 | 11, 17 | remulcld 11291 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ) | 
| 19 |  | reflcl 13836 | . . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ →
(⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) | 
| 20 | 18, 19 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) →
(⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) | 
| 21 | 20, 16 | nndivred 12320 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) →
((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ) | 
| 22 | 21 | ralrimivva 3202 | . . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ) | 
| 23 | 3 | fmpo 8093 | . . . . . . . . . . . . 13
⊢
(∀𝑚 ∈
ℕ ∀𝑦 ∈
ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ↔ 𝐽:(ℕ ×
ℝ)⟶ℝ) | 
| 24 | 22, 23 | sylib 218 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝐽:(ℕ ×
ℝ)⟶ℝ) | 
| 25 |  | fovcdm 7603 | . . . . . . . . . . . 12
⊢ ((𝐽:(ℕ ×
ℝ)⟶ℝ ∧ 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ) | 
| 26 | 24, 25 | syl3an1 1164 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ) | 
| 27 | 26 | 3expa 1119 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ) | 
| 28 |  | nnre 12273 | . . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ) | 
| 29 | 28 | ad2antlr 727 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ) | 
| 30 |  | nnnn0 12533 | . . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℕ0) | 
| 31 |  | nnexpcl 14115 | . . . . . . . . . . . . 13
⊢ ((2
∈ ℕ ∧ 𝐴
∈ ℕ0) → (2↑𝐴) ∈ ℕ) | 
| 32 | 12, 30, 31 | sylancr 587 | . . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ →
(2↑𝐴) ∈
ℕ) | 
| 33 | 32 | ad2antlr 727 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈
ℕ) | 
| 34 |  | nnre 12273 | . . . . . . . . . . . 12
⊢
((2↑𝐴) ∈
ℕ → (2↑𝐴)
∈ ℝ) | 
| 35 |  | nngt0 12297 | . . . . . . . . . . . 12
⊢
((2↑𝐴) ∈
ℕ → 0 < (2↑𝐴)) | 
| 36 | 34, 35 | jca 511 | . . . . . . . . . . 11
⊢
((2↑𝐴) ∈
ℕ → ((2↑𝐴)
∈ ℝ ∧ 0 < (2↑𝐴))) | 
| 37 | 33, 36 | syl 17 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((2↑𝐴) ∈ ℝ ∧ 0 <
(2↑𝐴))) | 
| 38 |  | lemul1 12119 | . . . . . . . . . 10
⊢ (((𝐴𝐽𝑥) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((2↑𝐴) ∈ ℝ ∧ 0 <
(2↑𝐴))) → ((𝐴𝐽𝑥) ≤ 𝐴 ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴)))) | 
| 39 | 27, 29, 37, 38 | syl3anc 1373 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐴𝐽𝑥) ≤ 𝐴 ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴)))) | 
| 40 | 39 | biimpa 476 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴))) | 
| 41 |  | simpr 484 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 = 𝐴 ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) | 
| 42 | 41 | fveq2d 6910 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 = 𝐴 ∧ 𝑦 = 𝑥) → (𝐹‘𝑦) = (𝐹‘𝑥)) | 
| 43 |  | simpl 482 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 = 𝐴 ∧ 𝑦 = 𝑥) → 𝑚 = 𝐴) | 
| 44 | 43 | oveq2d 7447 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 = 𝐴 ∧ 𝑦 = 𝑥) → (2↑𝑚) = (2↑𝐴)) | 
| 45 | 42, 44 | oveq12d 7449 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑚 = 𝐴 ∧ 𝑦 = 𝑥) → ((𝐹‘𝑦) · (2↑𝑚)) = ((𝐹‘𝑥) · (2↑𝐴))) | 
| 46 | 45 | fveq2d 6910 | . . . . . . . . . . . . . . . 16
⊢ ((𝑚 = 𝐴 ∧ 𝑦 = 𝑥) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) = (⌊‘((𝐹‘𝑥) · (2↑𝐴)))) | 
| 47 | 46, 44 | oveq12d 7449 | . . . . . . . . . . . . . . 15
⊢ ((𝑚 = 𝐴 ∧ 𝑦 = 𝑥) → ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹‘𝑥) · (2↑𝐴))) / (2↑𝐴))) | 
| 48 |  | ovex 7464 | . . . . . . . . . . . . . . 15
⊢
((⌊‘((𝐹‘𝑥) · (2↑𝐴))) / (2↑𝐴)) ∈ V | 
| 49 | 47, 3, 48 | ovmpoa 7588 | . . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) = ((⌊‘((𝐹‘𝑥) · (2↑𝐴))) / (2↑𝐴))) | 
| 50 | 49 | ad4ant23 753 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) = ((⌊‘((𝐹‘𝑥) · (2↑𝐴))) / (2↑𝐴))) | 
| 51 | 50 | oveq1d 7446 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) = (((⌊‘((𝐹‘𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑𝐴))) | 
| 52 | 2 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → 𝐹:ℝ⟶(0[,)+∞)) | 
| 53 | 52 | ffvelcdmda 7104 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ (0[,)+∞)) | 
| 54 |  | elrege0 13494 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) | 
| 55 | 53, 54 | sylib 218 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) | 
| 56 | 55 | simpld 494 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) | 
| 57 | 33 | nnred 12281 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈
ℝ) | 
| 58 | 56, 57 | remulcld 11291 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) · (2↑𝐴)) ∈ ℝ) | 
| 59 | 33 | nnnn0d 12587 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈
ℕ0) | 
| 60 | 59 | nn0ge0d 12590 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ (2↑𝐴)) | 
| 61 |  | mulge0 11781 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥)) ∧ ((2↑𝐴) ∈ ℝ ∧ 0 ≤ (2↑𝐴))) → 0 ≤ ((𝐹‘𝑥) · (2↑𝐴))) | 
| 62 | 55, 57, 60, 61 | syl12anc 837 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ ((𝐹‘𝑥) · (2↑𝐴))) | 
| 63 |  | flge0nn0 13860 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑥) · (2↑𝐴)) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑥) · (2↑𝐴))) → (⌊‘((𝐹‘𝑥) · (2↑𝐴))) ∈
ℕ0) | 
| 64 | 58, 62, 63 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝐹‘𝑥) · (2↑𝐴))) ∈
ℕ0) | 
| 65 | 64 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (⌊‘((𝐹‘𝑥) · (2↑𝐴))) ∈
ℕ0) | 
| 66 | 65 | nn0cnd 12589 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (⌊‘((𝐹‘𝑥) · (2↑𝐴))) ∈ ℂ) | 
| 67 | 33 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (2↑𝐴) ∈ ℕ) | 
| 68 | 67 | nncnd 12282 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (2↑𝐴) ∈ ℂ) | 
| 69 | 67 | nnne0d 12316 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (2↑𝐴) ≠ 0) | 
| 70 | 66, 68, 69 | divcan1d 12044 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (((⌊‘((𝐹‘𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑𝐴)) = (⌊‘((𝐹‘𝑥) · (2↑𝐴)))) | 
| 71 | 51, 70 | eqtrd 2777 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) = (⌊‘((𝐹‘𝑥) · (2↑𝐴)))) | 
| 72 | 71, 65 | eqeltrd 2841 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ∈
ℕ0) | 
| 73 |  | nn0uz 12920 | . . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) | 
| 74 | 72, 73 | eleqtrdi 2851 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ∈
(ℤ≥‘0)) | 
| 75 |  | nnmulcl 12290 | . . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧
(2↑𝐴) ∈ ℕ)
→ (𝐴 ·
(2↑𝐴)) ∈
ℕ) | 
| 76 | 32, 75 | mpdan 687 | . . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ → (𝐴 · (2↑𝐴)) ∈
ℕ) | 
| 77 | 76 | ad2antlr 727 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ ℕ) | 
| 78 | 77 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴 · (2↑𝐴)) ∈ ℕ) | 
| 79 | 78 | nnzd 12640 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴 · (2↑𝐴)) ∈ ℤ) | 
| 80 |  | elfz5 13556 | . . . . . . . . 9
⊢ ((((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (ℤ≥‘0)
∧ (𝐴 ·
(2↑𝐴)) ∈ ℤ)
→ (((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴)))) | 
| 81 | 74, 79, 80 | syl2anc 584 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴)))) | 
| 82 | 40, 81 | mpbird 257 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) | 
| 83 |  | oveq1 7438 | . . . . . . . 8
⊢ (𝑚 = ((𝐴𝐽𝑥) · (2↑𝐴)) → (𝑚 / (2↑𝐴)) = (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴))) | 
| 84 |  | eqid 2737 | . . . . . . . 8
⊢ (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) = (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) | 
| 85 |  | ovex 7464 | . . . . . . . 8
⊢ (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)) ∈ V | 
| 86 | 83, 84, 85 | fvmpt 7016 | . . . . . . 7
⊢ (((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) = (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴))) | 
| 87 | 82, 86 | syl 17 | . . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) = (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴))) | 
| 88 | 27 | adantr 480 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) ∈ ℝ) | 
| 89 | 88 | recnd 11289 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) ∈ ℂ) | 
| 90 | 89, 68, 69 | divcan4d 12049 | . . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)) = (𝐴𝐽𝑥)) | 
| 91 | 87, 90 | eqtrd 2777 | . . . . 5
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) = (𝐴𝐽𝑥)) | 
| 92 |  | elfznn0 13660 | . . . . . . . . . . . 12
⊢ (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) → 𝑚 ∈ ℕ0) | 
| 93 | 92 | nn0red 12588 | . . . . . . . . . . 11
⊢ (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) → 𝑚 ∈ ℝ) | 
| 94 | 32 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (2↑𝐴) ∈
ℕ) | 
| 95 |  | nndivre 12307 | . . . . . . . . . . 11
⊢ ((𝑚 ∈ ℝ ∧
(2↑𝐴) ∈ ℕ)
→ (𝑚 / (2↑𝐴)) ∈
ℝ) | 
| 96 | 93, 94, 95 | syl2anr 597 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐴 · (2↑𝐴)))) → (𝑚 / (2↑𝐴)) ∈ ℝ) | 
| 97 | 96 | fmpttd 7135 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))):(0...(𝐴 · (2↑𝐴)))⟶ℝ) | 
| 98 | 97 | ffnd 6737 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴)))) | 
| 99 | 98 | adantr 480 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴)))) | 
| 100 | 99 | adantr 480 | . . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴)))) | 
| 101 |  | fnfvelrn 7100 | . . . . . 6
⊢ (((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))) ∧ ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) | 
| 102 | 100, 82, 101 | syl2anc 584 | . . . . 5
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) | 
| 103 | 91, 102 | eqeltrrd 2842 | . . . 4
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) | 
| 104 | 77 | nnnn0d 12587 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈
ℕ0) | 
| 105 | 104, 73 | eleqtrdi 2851 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈
(ℤ≥‘0)) | 
| 106 |  | eluzfz2 13572 | . . . . . . . . 9
⊢ ((𝐴 · (2↑𝐴)) ∈
(ℤ≥‘0) → (𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) | 
| 107 | 105, 106 | syl 17 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) | 
| 108 |  | oveq1 7438 | . . . . . . . . 9
⊢ (𝑚 = (𝐴 · (2↑𝐴)) → (𝑚 / (2↑𝐴)) = ((𝐴 · (2↑𝐴)) / (2↑𝐴))) | 
| 109 |  | ovex 7464 | . . . . . . . . 9
⊢ ((𝐴 · (2↑𝐴)) / (2↑𝐴)) ∈ V | 
| 110 | 108, 84, 109 | fvmpt 7016 | . . . . . . . 8
⊢ ((𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) = ((𝐴 · (2↑𝐴)) / (2↑𝐴))) | 
| 111 | 107, 110 | syl 17 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) = ((𝐴 · (2↑𝐴)) / (2↑𝐴))) | 
| 112 | 29 | recnd 11289 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℂ) | 
| 113 | 33 | nncnd 12282 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈
ℂ) | 
| 114 | 33 | nnne0d 12316 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ≠ 0) | 
| 115 | 112, 113,
114 | divcan4d 12049 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐴 · (2↑𝐴)) / (2↑𝐴)) = 𝐴) | 
| 116 | 111, 115 | eqtrd 2777 | . . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) = 𝐴) | 
| 117 |  | fnfvelrn 7100 | . . . . . . 7
⊢ (((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))) ∧ (𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) | 
| 118 | 99, 107, 117 | syl2anc 584 | . . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) | 
| 119 | 116, 118 | eqeltrrd 2842 | . . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) | 
| 120 | 119 | adantr 480 | . . . 4
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐴𝐽𝑥) ≤ 𝐴) → 𝐴 ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) | 
| 121 | 103, 120 | ifclda 4561 | . . 3
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) | 
| 122 |  | eluzfz1 13571 | . . . . . . 7
⊢ ((𝐴 · (2↑𝐴)) ∈
(ℤ≥‘0) → 0 ∈ (0...(𝐴 · (2↑𝐴)))) | 
| 123 | 105, 122 | syl 17 | . . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ∈ (0...(𝐴 · (2↑𝐴)))) | 
| 124 |  | oveq1 7438 | . . . . . . 7
⊢ (𝑚 = 0 → (𝑚 / (2↑𝐴)) = (0 / (2↑𝐴))) | 
| 125 |  | ovex 7464 | . . . . . . 7
⊢ (0 /
(2↑𝐴)) ∈
V | 
| 126 | 124, 84, 125 | fvmpt 7016 | . . . . . 6
⊢ (0 ∈
(0...(𝐴 ·
(2↑𝐴))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) = (0 / (2↑𝐴))) | 
| 127 | 123, 126 | syl 17 | . . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) = (0 / (2↑𝐴))) | 
| 128 |  | nncn 12274 | . . . . . . 7
⊢
((2↑𝐴) ∈
ℕ → (2↑𝐴)
∈ ℂ) | 
| 129 |  | nnne0 12300 | . . . . . . 7
⊢
((2↑𝐴) ∈
ℕ → (2↑𝐴)
≠ 0) | 
| 130 | 128, 129 | div0d 12042 | . . . . . 6
⊢
((2↑𝐴) ∈
ℕ → (0 / (2↑𝐴)) = 0) | 
| 131 | 33, 130 | syl 17 | . . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (0 / (2↑𝐴)) = 0) | 
| 132 | 127, 131 | eqtrd 2777 | . . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) = 0) | 
| 133 |  | fnfvelrn 7100 | . . . . 5
⊢ (((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))) ∧ 0 ∈ (0...(𝐴 · (2↑𝐴)))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) | 
| 134 | 99, 123, 133 | syl2anc 584 | . . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) | 
| 135 | 132, 134 | eqeltrrd 2842 | . . 3
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) | 
| 136 | 121, 135 | ifcld 4572 | . 2
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) | 
| 137 | 6, 136 | fmpt3d 7136 | 1
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝐺‘𝐴):ℝ⟶ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |