MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem3 Structured version   Visualization version   GIF version

Theorem mbfi1fseqlem3 24882
Description: Lemma for mbfi1fseq 24886. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
mbfi1fseq.3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
mbfi1fseq.4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
Assertion
Ref Expression
mbfi1fseqlem3 ((𝜑𝐴 ∈ ℕ) → (𝐺𝐴):ℝ⟶ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑥,𝐺   𝑚,𝐽   𝜑,𝑚,𝑥,𝑦   𝐴,𝑚,𝑥,𝑦
Allowed substitution hints:   𝐺(𝑦,𝑚)   𝐽(𝑥,𝑦)

Proof of Theorem mbfi1fseqlem3
StepHypRef Expression
1 mbfi1fseq.1 . . . 4 (𝜑𝐹 ∈ MblFn)
2 mbfi1fseq.2 . . . 4 (𝜑𝐹:ℝ⟶(0[,)+∞))
3 mbfi1fseq.3 . . . 4 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
4 mbfi1fseq.4 . . . 4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
51, 2, 3, 4mbfi1fseqlem2 24881 . . 3 (𝐴 ∈ ℕ → (𝐺𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)))
65adantl 482 . 2 ((𝜑𝐴 ∈ ℕ) → (𝐺𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)))
7 rge0ssre 13188 . . . . . . . . . . . . . . . . . 18 (0[,)+∞) ⊆ ℝ
8 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
9 ffvelrn 6959 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℝ⟶(0[,)+∞) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,)+∞))
102, 8, 9syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ (0[,)+∞))
117, 10sselid 3919 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ ℝ)
12 2nn 12046 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℕ
13 nnnn0 12240 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
14 nnexpcl 13795 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
1512, 13, 14sylancr 587 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ)
1615ad2antrl 725 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ)
1716nnred 11988 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℝ)
1811, 17remulcld 11005 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹𝑦) · (2↑𝑚)) ∈ ℝ)
19 reflcl 13516 . . . . . . . . . . . . . . . 16 (((𝐹𝑦) · (2↑𝑚)) ∈ ℝ → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
2018, 19syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
2120, 16nndivred 12027 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
2221ralrimivva 3123 . . . . . . . . . . . . 13 (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
233fmpo 7908 . . . . . . . . . . . . 13 (∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ↔ 𝐽:(ℕ × ℝ)⟶ℝ)
2422, 23sylib 217 . . . . . . . . . . . 12 (𝜑𝐽:(ℕ × ℝ)⟶ℝ)
25 fovrn 7442 . . . . . . . . . . . 12 ((𝐽:(ℕ × ℝ)⟶ℝ ∧ 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ)
2624, 25syl3an1 1162 . . . . . . . . . . 11 ((𝜑𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ)
27263expa 1117 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ)
28 nnre 11980 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
2928ad2antlr 724 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
30 nnnn0 12240 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
31 nnexpcl 13795 . . . . . . . . . . . . 13 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (2↑𝐴) ∈ ℕ)
3212, 30, 31sylancr 587 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (2↑𝐴) ∈ ℕ)
3332ad2antlr 724 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℕ)
34 nnre 11980 . . . . . . . . . . . 12 ((2↑𝐴) ∈ ℕ → (2↑𝐴) ∈ ℝ)
35 nngt0 12004 . . . . . . . . . . . 12 ((2↑𝐴) ∈ ℕ → 0 < (2↑𝐴))
3634, 35jca 512 . . . . . . . . . . 11 ((2↑𝐴) ∈ ℕ → ((2↑𝐴) ∈ ℝ ∧ 0 < (2↑𝐴)))
3733, 36syl 17 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((2↑𝐴) ∈ ℝ ∧ 0 < (2↑𝐴)))
38 lemul1 11827 . . . . . . . . . 10 (((𝐴𝐽𝑥) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((2↑𝐴) ∈ ℝ ∧ 0 < (2↑𝐴))) → ((𝐴𝐽𝑥) ≤ 𝐴 ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴))))
3927, 29, 37, 38syl3anc 1370 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐴𝐽𝑥) ≤ 𝐴 ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴))))
4039biimpa 477 . . . . . . . 8 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴)))
41 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((𝑚 = 𝐴𝑦 = 𝑥) → 𝑦 = 𝑥)
4241fveq2d 6778 . . . . . . . . . . . . . . . . . 18 ((𝑚 = 𝐴𝑦 = 𝑥) → (𝐹𝑦) = (𝐹𝑥))
43 simpl 483 . . . . . . . . . . . . . . . . . . 19 ((𝑚 = 𝐴𝑦 = 𝑥) → 𝑚 = 𝐴)
4443oveq2d 7291 . . . . . . . . . . . . . . . . . 18 ((𝑚 = 𝐴𝑦 = 𝑥) → (2↑𝑚) = (2↑𝐴))
4542, 44oveq12d 7293 . . . . . . . . . . . . . . . . 17 ((𝑚 = 𝐴𝑦 = 𝑥) → ((𝐹𝑦) · (2↑𝑚)) = ((𝐹𝑥) · (2↑𝐴)))
4645fveq2d 6778 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝐴𝑦 = 𝑥) → (⌊‘((𝐹𝑦) · (2↑𝑚))) = (⌊‘((𝐹𝑥) · (2↑𝐴))))
4746, 44oveq12d 7293 . . . . . . . . . . . . . . 15 ((𝑚 = 𝐴𝑦 = 𝑥) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
48 ovex 7308 . . . . . . . . . . . . . . 15 ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) ∈ V
4947, 3, 48ovmpoa 7428 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
5049ad4ant23 750 . . . . . . . . . . . . 13 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
5150oveq1d 7290 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) = (((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑𝐴)))
522adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝐴 ∈ ℕ) → 𝐹:ℝ⟶(0[,)+∞))
5352ffvelrnda 6961 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
54 elrege0 13186 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
5553, 54sylib 217 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
5655simpld 495 . . . . . . . . . . . . . . . . 17 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
5733nnred 11988 . . . . . . . . . . . . . . . . 17 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℝ)
5856, 57remulcld 11005 . . . . . . . . . . . . . . . 16 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) · (2↑𝐴)) ∈ ℝ)
5933nnnn0d 12293 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℕ0)
6059nn0ge0d 12296 . . . . . . . . . . . . . . . . 17 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ (2↑𝐴))
61 mulge0 11493 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)) ∧ ((2↑𝐴) ∈ ℝ ∧ 0 ≤ (2↑𝐴))) → 0 ≤ ((𝐹𝑥) · (2↑𝐴)))
6255, 57, 60, 61syl12anc 834 . . . . . . . . . . . . . . . 16 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ ((𝐹𝑥) · (2↑𝐴)))
63 flge0nn0 13540 . . . . . . . . . . . . . . . 16 ((((𝐹𝑥) · (2↑𝐴)) ∈ ℝ ∧ 0 ≤ ((𝐹𝑥) · (2↑𝐴))) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℕ0)
6458, 62, 63syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℕ0)
6564adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℕ0)
6665nn0cnd 12295 . . . . . . . . . . . . 13 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℂ)
6733adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (2↑𝐴) ∈ ℕ)
6867nncnd 11989 . . . . . . . . . . . . 13 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (2↑𝐴) ∈ ℂ)
6967nnne0d 12023 . . . . . . . . . . . . 13 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (2↑𝐴) ≠ 0)
7066, 68, 69divcan1d 11752 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑𝐴)) = (⌊‘((𝐹𝑥) · (2↑𝐴))))
7151, 70eqtrd 2778 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) = (⌊‘((𝐹𝑥) · (2↑𝐴))))
7271, 65eqeltrd 2839 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ ℕ0)
73 nn0uz 12620 . . . . . . . . . 10 0 = (ℤ‘0)
7472, 73eleqtrdi 2849 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (ℤ‘0))
75 nnmulcl 11997 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ (2↑𝐴) ∈ ℕ) → (𝐴 · (2↑𝐴)) ∈ ℕ)
7632, 75mpdan 684 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (𝐴 · (2↑𝐴)) ∈ ℕ)
7776ad2antlr 724 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ ℕ)
7877adantr 481 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴 · (2↑𝐴)) ∈ ℕ)
7978nnzd 12425 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴 · (2↑𝐴)) ∈ ℤ)
80 elfz5 13248 . . . . . . . . 9 ((((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (ℤ‘0) ∧ (𝐴 · (2↑𝐴)) ∈ ℤ) → (((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴))))
8174, 79, 80syl2anc 584 . . . . . . . 8 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴))))
8240, 81mpbird 256 . . . . . . 7 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))))
83 oveq1 7282 . . . . . . . 8 (𝑚 = ((𝐴𝐽𝑥) · (2↑𝐴)) → (𝑚 / (2↑𝐴)) = (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)))
84 eqid 2738 . . . . . . . 8 (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) = (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))
85 ovex 7308 . . . . . . . 8 (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)) ∈ V
8683, 84, 85fvmpt 6875 . . . . . . 7 (((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) = (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)))
8782, 86syl 17 . . . . . 6 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) = (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)))
8827adantr 481 . . . . . . . 8 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) ∈ ℝ)
8988recnd 11003 . . . . . . 7 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) ∈ ℂ)
9089, 68, 69divcan4d 11757 . . . . . 6 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)) = (𝐴𝐽𝑥))
9187, 90eqtrd 2778 . . . . 5 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) = (𝐴𝐽𝑥))
92 elfznn0 13349 . . . . . . . . . . . 12 (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) → 𝑚 ∈ ℕ0)
9392nn0red 12294 . . . . . . . . . . 11 (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) → 𝑚 ∈ ℝ)
9432adantl 482 . . . . . . . . . . 11 ((𝜑𝐴 ∈ ℕ) → (2↑𝐴) ∈ ℕ)
95 nndivre 12014 . . . . . . . . . . 11 ((𝑚 ∈ ℝ ∧ (2↑𝐴) ∈ ℕ) → (𝑚 / (2↑𝐴)) ∈ ℝ)
9693, 94, 95syl2anr 597 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐴 · (2↑𝐴)))) → (𝑚 / (2↑𝐴)) ∈ ℝ)
9796fmpttd 6989 . . . . . . . . 9 ((𝜑𝐴 ∈ ℕ) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))):(0...(𝐴 · (2↑𝐴)))⟶ℝ)
9897ffnd 6601 . . . . . . . 8 ((𝜑𝐴 ∈ ℕ) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))))
9998adantr 481 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))))
10099adantr 481 . . . . . 6 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))))
101 fnfvelrn 6958 . . . . . 6 (((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))) ∧ ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
102100, 82, 101syl2anc 584 . . . . 5 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
10391, 102eqeltrrd 2840 . . . 4 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
10477nnnn0d 12293 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ ℕ0)
105104, 73eleqtrdi 2849 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ (ℤ‘0))
106 eluzfz2 13264 . . . . . . . . 9 ((𝐴 · (2↑𝐴)) ∈ (ℤ‘0) → (𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))))
107105, 106syl 17 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))))
108 oveq1 7282 . . . . . . . . 9 (𝑚 = (𝐴 · (2↑𝐴)) → (𝑚 / (2↑𝐴)) = ((𝐴 · (2↑𝐴)) / (2↑𝐴)))
109 ovex 7308 . . . . . . . . 9 ((𝐴 · (2↑𝐴)) / (2↑𝐴)) ∈ V
110108, 84, 109fvmpt 6875 . . . . . . . 8 ((𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) = ((𝐴 · (2↑𝐴)) / (2↑𝐴)))
111107, 110syl 17 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) = ((𝐴 · (2↑𝐴)) / (2↑𝐴)))
11229recnd 11003 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℂ)
11333nncnd 11989 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℂ)
11433nnne0d 12023 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ≠ 0)
115112, 113, 114divcan4d 11757 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐴 · (2↑𝐴)) / (2↑𝐴)) = 𝐴)
116111, 115eqtrd 2778 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) = 𝐴)
117 fnfvelrn 6958 . . . . . . 7 (((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))) ∧ (𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
11899, 107, 117syl2anc 584 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
119116, 118eqeltrrd 2840 . . . . 5 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
120119adantr 481 . . . 4 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐴𝐽𝑥) ≤ 𝐴) → 𝐴 ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
121103, 120ifclda 4494 . . 3 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
122 eluzfz1 13263 . . . . . . 7 ((𝐴 · (2↑𝐴)) ∈ (ℤ‘0) → 0 ∈ (0...(𝐴 · (2↑𝐴))))
123105, 122syl 17 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ∈ (0...(𝐴 · (2↑𝐴))))
124 oveq1 7282 . . . . . . 7 (𝑚 = 0 → (𝑚 / (2↑𝐴)) = (0 / (2↑𝐴)))
125 ovex 7308 . . . . . . 7 (0 / (2↑𝐴)) ∈ V
126124, 84, 125fvmpt 6875 . . . . . 6 (0 ∈ (0...(𝐴 · (2↑𝐴))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) = (0 / (2↑𝐴)))
127123, 126syl 17 . . . . 5 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) = (0 / (2↑𝐴)))
128 nncn 11981 . . . . . . 7 ((2↑𝐴) ∈ ℕ → (2↑𝐴) ∈ ℂ)
129 nnne0 12007 . . . . . . 7 ((2↑𝐴) ∈ ℕ → (2↑𝐴) ≠ 0)
130128, 129div0d 11750 . . . . . 6 ((2↑𝐴) ∈ ℕ → (0 / (2↑𝐴)) = 0)
13133, 130syl 17 . . . . 5 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (0 / (2↑𝐴)) = 0)
132127, 131eqtrd 2778 . . . 4 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) = 0)
133 fnfvelrn 6958 . . . . 5 (((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))) ∧ 0 ∈ (0...(𝐴 · (2↑𝐴)))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
13499, 123, 133syl2anc 584 . . . 4 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
135132, 134eqeltrrd 2840 . . 3 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
136121, 135ifcld 4505 . 2 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
1376, 136fmpt3d 6990 1 ((𝜑𝐴 ∈ ℕ) → (𝐺𝐴):ℝ⟶ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  ifcif 4459   class class class wbr 5074  cmpt 5157   × cxp 5587  ran crn 5590   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  cr 10870  0cc0 10871   · cmul 10876  +∞cpnf 11006   < clt 11009  cle 11010  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  [,)cico 13081  [,]cicc 13082  ...cfz 13239  cfl 13510  cexp 13782  MblFncmbf 24778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-ico 13085  df-fz 13240  df-fl 13512  df-seq 13722  df-exp 13783
This theorem is referenced by:  mbfi1fseqlem4  24883
  Copyright terms: Public domain W3C validator