MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem3 Structured version   Visualization version   GIF version

Theorem mbfi1fseqlem3 23775
Description: Lemma for mbfi1fseq 23779. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1 (𝜑𝐹 ∈ MblFn)
mbfi1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
mbfi1fseq.3 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
mbfi1fseq.4 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
Assertion
Ref Expression
mbfi1fseqlem3 ((𝜑𝐴 ∈ ℕ) → (𝐺𝐴):ℝ⟶ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐹   𝑥,𝐺   𝑚,𝐽   𝜑,𝑚,𝑥,𝑦   𝐴,𝑚,𝑥,𝑦
Allowed substitution hints:   𝐺(𝑦,𝑚)   𝐽(𝑥,𝑦)

Proof of Theorem mbfi1fseqlem3
StepHypRef Expression
1 rge0ssre 12484 . . . . . . . . . . . . . . . . . . 19 (0[,)+∞) ⊆ ℝ
2 mbfi1fseq.2 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹:ℝ⟶(0[,)+∞))
3 simpr 477 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
4 ffvelrn 6547 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:ℝ⟶(0[,)+∞) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,)+∞))
52, 3, 4syl2an 589 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ (0[,)+∞))
61, 5sseldi 3759 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹𝑦) ∈ ℝ)
7 2nn 11345 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℕ
8 nnnn0 11546 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ ℕ → 𝑚 ∈ ℕ0)
9 nnexpcl 13080 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ0) → (2↑𝑚) ∈ ℕ)
107, 8, 9sylancr 581 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ ℕ → (2↑𝑚) ∈ ℕ)
1110ad2antrl 719 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℕ)
1211nnred 11291 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈ ℝ)
136, 12remulcld 10324 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹𝑦) · (2↑𝑚)) ∈ ℝ)
14 reflcl 12805 . . . . . . . . . . . . . . . . 17 (((𝐹𝑦) · (2↑𝑚)) ∈ ℝ → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
1513, 14syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (⌊‘((𝐹𝑦) · (2↑𝑚))) ∈ ℝ)
1615, 11nndivred 11326 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
1716ralrimivva 3118 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ)
18 mbfi1fseq.3 . . . . . . . . . . . . . . 15 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)))
1918fmpt2 7438 . . . . . . . . . . . . . 14 (∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ↔ 𝐽:(ℕ × ℝ)⟶ℝ)
2017, 19sylib 209 . . . . . . . . . . . . 13 (𝜑𝐽:(ℕ × ℝ)⟶ℝ)
21 fovrn 7002 . . . . . . . . . . . . 13 ((𝐽:(ℕ × ℝ)⟶ℝ ∧ 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ)
2220, 21syl3an1 1202 . . . . . . . . . . . 12 ((𝜑𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ)
23223expa 1147 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ)
24 nnre 11282 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
2524ad2antlr 718 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
26 nnnn0 11546 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
27 nnexpcl 13080 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (2↑𝐴) ∈ ℕ)
287, 26, 27sylancr 581 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → (2↑𝐴) ∈ ℕ)
2928ad2antlr 718 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℕ)
30 nnre 11282 . . . . . . . . . . . . 13 ((2↑𝐴) ∈ ℕ → (2↑𝐴) ∈ ℝ)
31 nngt0 11306 . . . . . . . . . . . . 13 ((2↑𝐴) ∈ ℕ → 0 < (2↑𝐴))
3230, 31jca 507 . . . . . . . . . . . 12 ((2↑𝐴) ∈ ℕ → ((2↑𝐴) ∈ ℝ ∧ 0 < (2↑𝐴)))
3329, 32syl 17 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((2↑𝐴) ∈ ℝ ∧ 0 < (2↑𝐴)))
34 lemul1 11129 . . . . . . . . . . 11 (((𝐴𝐽𝑥) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((2↑𝐴) ∈ ℝ ∧ 0 < (2↑𝐴))) → ((𝐴𝐽𝑥) ≤ 𝐴 ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴))))
3523, 25, 33, 34syl3anc 1490 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐴𝐽𝑥) ≤ 𝐴 ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴))))
3635biimpa 468 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴)))
37 simplr 785 . . . . . . . . . . . . . . . 16 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℕ)
3837adantr 472 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → 𝐴 ∈ ℕ)
39 simplr 785 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → 𝑥 ∈ ℝ)
40 simpr 477 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 = 𝐴𝑦 = 𝑥) → 𝑦 = 𝑥)
4140fveq2d 6379 . . . . . . . . . . . . . . . . . . 19 ((𝑚 = 𝐴𝑦 = 𝑥) → (𝐹𝑦) = (𝐹𝑥))
42 simpl 474 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 = 𝐴𝑦 = 𝑥) → 𝑚 = 𝐴)
4342oveq2d 6858 . . . . . . . . . . . . . . . . . . 19 ((𝑚 = 𝐴𝑦 = 𝑥) → (2↑𝑚) = (2↑𝐴))
4441, 43oveq12d 6860 . . . . . . . . . . . . . . . . . 18 ((𝑚 = 𝐴𝑦 = 𝑥) → ((𝐹𝑦) · (2↑𝑚)) = ((𝐹𝑥) · (2↑𝐴)))
4544fveq2d 6379 . . . . . . . . . . . . . . . . 17 ((𝑚 = 𝐴𝑦 = 𝑥) → (⌊‘((𝐹𝑦) · (2↑𝑚))) = (⌊‘((𝐹𝑥) · (2↑𝐴))))
4645, 43oveq12d 6860 . . . . . . . . . . . . . . . 16 ((𝑚 = 𝐴𝑦 = 𝑥) → ((⌊‘((𝐹𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
47 ovex 6874 . . . . . . . . . . . . . . . 16 ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) ∈ V
4846, 18, 47ovmpt2a 6989 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
4938, 39, 48syl2anc 579 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) = ((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)))
5049oveq1d 6857 . . . . . . . . . . . . 13 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) = (((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑𝐴)))
512adantr 472 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝐴 ∈ ℕ) → 𝐹:ℝ⟶(0[,)+∞))
5251ffvelrnda 6549 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
53 elrege0 12482 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
5452, 53sylib 209 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
5554simpld 488 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
5629nnred 11291 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℝ)
5755, 56remulcld 10324 . . . . . . . . . . . . . . . . 17 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) · (2↑𝐴)) ∈ ℝ)
5829nnnn0d 11598 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℕ0)
5958nn0ge0d 11601 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ (2↑𝐴))
60 mulge0 10800 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)) ∧ ((2↑𝐴) ∈ ℝ ∧ 0 ≤ (2↑𝐴))) → 0 ≤ ((𝐹𝑥) · (2↑𝐴)))
6154, 56, 59, 60syl12anc 865 . . . . . . . . . . . . . . . . 17 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ ((𝐹𝑥) · (2↑𝐴)))
62 flge0nn0 12829 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑥) · (2↑𝐴)) ∈ ℝ ∧ 0 ≤ ((𝐹𝑥) · (2↑𝐴))) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℕ0)
6357, 61, 62syl2anc 579 . . . . . . . . . . . . . . . 16 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℕ0)
6463adantr 472 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℕ0)
6564nn0cnd 11600 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (⌊‘((𝐹𝑥) · (2↑𝐴))) ∈ ℂ)
6629adantr 472 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (2↑𝐴) ∈ ℕ)
6766nncnd 11292 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (2↑𝐴) ∈ ℂ)
6866nnne0d 11322 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (2↑𝐴) ≠ 0)
6965, 67, 68divcan1d 11056 . . . . . . . . . . . . 13 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (((⌊‘((𝐹𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑𝐴)) = (⌊‘((𝐹𝑥) · (2↑𝐴))))
7050, 69eqtrd 2799 . . . . . . . . . . . 12 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) = (⌊‘((𝐹𝑥) · (2↑𝐴))))
7170, 64eqeltrd 2844 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ ℕ0)
72 nn0uz 11922 . . . . . . . . . . 11 0 = (ℤ‘0)
7371, 72syl6eleq 2854 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (ℤ‘0))
74 nnmulcl 11299 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ (2↑𝐴) ∈ ℕ) → (𝐴 · (2↑𝐴)) ∈ ℕ)
7528, 74mpdan 678 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → (𝐴 · (2↑𝐴)) ∈ ℕ)
7675ad2antlr 718 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ ℕ)
7776adantr 472 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴 · (2↑𝐴)) ∈ ℕ)
7877nnzd 11728 . . . . . . . . . 10 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴 · (2↑𝐴)) ∈ ℤ)
79 elfz5 12541 . . . . . . . . . 10 ((((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (ℤ‘0) ∧ (𝐴 · (2↑𝐴)) ∈ ℤ) → (((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴))))
8073, 78, 79syl2anc 579 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴))))
8136, 80mpbird 248 . . . . . . . 8 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))))
82 oveq1 6849 . . . . . . . . 9 (𝑚 = ((𝐴𝐽𝑥) · (2↑𝐴)) → (𝑚 / (2↑𝐴)) = (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)))
83 eqid 2765 . . . . . . . . 9 (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) = (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))
84 ovex 6874 . . . . . . . . 9 (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)) ∈ V
8582, 83, 84fvmpt 6471 . . . . . . . 8 (((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) = (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)))
8681, 85syl 17 . . . . . . 7 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) = (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)))
8723adantr 472 . . . . . . . . 9 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) ∈ ℝ)
8887recnd 10322 . . . . . . . 8 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) ∈ ℂ)
8988, 67, 68divcan4d 11061 . . . . . . 7 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)) = (𝐴𝐽𝑥))
9086, 89eqtrd 2799 . . . . . 6 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) = (𝐴𝐽𝑥))
91 elfznn0 12640 . . . . . . . . . . . . 13 (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) → 𝑚 ∈ ℕ0)
9291nn0red 11599 . . . . . . . . . . . 12 (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) → 𝑚 ∈ ℝ)
9328adantl 473 . . . . . . . . . . . 12 ((𝜑𝐴 ∈ ℕ) → (2↑𝐴) ∈ ℕ)
94 nndivre 11313 . . . . . . . . . . . 12 ((𝑚 ∈ ℝ ∧ (2↑𝐴) ∈ ℕ) → (𝑚 / (2↑𝐴)) ∈ ℝ)
9592, 93, 94syl2anr 590 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐴 · (2↑𝐴)))) → (𝑚 / (2↑𝐴)) ∈ ℝ)
9695fmpttd 6575 . . . . . . . . . 10 ((𝜑𝐴 ∈ ℕ) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))):(0...(𝐴 · (2↑𝐴)))⟶ℝ)
9796ffnd 6224 . . . . . . . . 9 ((𝜑𝐴 ∈ ℕ) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))))
9897adantr 472 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))))
9998adantr 472 . . . . . . 7 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))))
100 fnfvelrn 6546 . . . . . . 7 (((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))) ∧ ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
10199, 81, 100syl2anc 579 . . . . . 6 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
10290, 101eqeltrrd 2845 . . . . 5 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
10376nnnn0d 11598 . . . . . . . . . . 11 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ ℕ0)
104103, 72syl6eleq 2854 . . . . . . . . . 10 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ (ℤ‘0))
105 eluzfz2 12556 . . . . . . . . . 10 ((𝐴 · (2↑𝐴)) ∈ (ℤ‘0) → (𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))))
106104, 105syl 17 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))))
107 oveq1 6849 . . . . . . . . . 10 (𝑚 = (𝐴 · (2↑𝐴)) → (𝑚 / (2↑𝐴)) = ((𝐴 · (2↑𝐴)) / (2↑𝐴)))
108 ovex 6874 . . . . . . . . . 10 ((𝐴 · (2↑𝐴)) / (2↑𝐴)) ∈ V
109107, 83, 108fvmpt 6471 . . . . . . . . 9 ((𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) = ((𝐴 · (2↑𝐴)) / (2↑𝐴)))
110106, 109syl 17 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) = ((𝐴 · (2↑𝐴)) / (2↑𝐴)))
11125recnd 10322 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℂ)
11229nncnd 11292 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈ ℂ)
11329nnne0d 11322 . . . . . . . . 9 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ≠ 0)
114111, 112, 113divcan4d 11061 . . . . . . . 8 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐴 · (2↑𝐴)) / (2↑𝐴)) = 𝐴)
115110, 114eqtrd 2799 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) = 𝐴)
116 fnfvelrn 6546 . . . . . . . 8 (((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))) ∧ (𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
11798, 106, 116syl2anc 579 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
118115, 117eqeltrrd 2845 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
119118adantr 472 . . . . 5 ((((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐴𝐽𝑥) ≤ 𝐴) → 𝐴 ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
120102, 119ifclda 4277 . . . 4 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
121 eluzfz1 12555 . . . . . . . 8 ((𝐴 · (2↑𝐴)) ∈ (ℤ‘0) → 0 ∈ (0...(𝐴 · (2↑𝐴))))
122104, 121syl 17 . . . . . . 7 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ∈ (0...(𝐴 · (2↑𝐴))))
123 oveq1 6849 . . . . . . . 8 (𝑚 = 0 → (𝑚 / (2↑𝐴)) = (0 / (2↑𝐴)))
124 ovex 6874 . . . . . . . 8 (0 / (2↑𝐴)) ∈ V
125123, 83, 124fvmpt 6471 . . . . . . 7 (0 ∈ (0...(𝐴 · (2↑𝐴))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) = (0 / (2↑𝐴)))
126122, 125syl 17 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) = (0 / (2↑𝐴)))
127 nncn 11283 . . . . . . . 8 ((2↑𝐴) ∈ ℕ → (2↑𝐴) ∈ ℂ)
128 nnne0 11310 . . . . . . . 8 ((2↑𝐴) ∈ ℕ → (2↑𝐴) ≠ 0)
129127, 128div0d 11054 . . . . . . 7 ((2↑𝐴) ∈ ℕ → (0 / (2↑𝐴)) = 0)
13029, 129syl 17 . . . . . 6 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (0 / (2↑𝐴)) = 0)
131126, 130eqtrd 2799 . . . . 5 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) = 0)
132 fnfvelrn 6546 . . . . . 6 (((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))) ∧ 0 ∈ (0...(𝐴 · (2↑𝐴)))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
13398, 122, 132syl2anc 579 . . . . 5 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
134131, 133eqeltrrd 2845 . . . 4 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
135120, 134ifcld 4288 . . 3 (((𝜑𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
136135fmpttd 6575 . 2 ((𝜑𝐴 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)):ℝ⟶ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
137 mbfi1fseq.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
138 mbfi1fseq.4 . . . . 5 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0)))
139137, 2, 18, 138mbfi1fseqlem2 23774 . . . 4 (𝐴 ∈ ℕ → (𝐺𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)))
140139adantl 473 . . 3 ((𝜑𝐴 ∈ ℕ) → (𝐺𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)))
141140feq1d 6208 . 2 ((𝜑𝐴 ∈ ℕ) → ((𝐺𝐴):ℝ⟶ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) ↔ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0)):ℝ⟶ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))))
142136, 141mpbird 248 1 ((𝜑𝐴 ∈ ℕ) → (𝐺𝐴):ℝ⟶ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  ifcif 4243   class class class wbr 4809  cmpt 4888   × cxp 5275  ran crn 5278   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  cmpt2 6844  cr 10188  0cc0 10189   · cmul 10194  +∞cpnf 10325   < clt 10328  cle 10329  -cneg 10521   / cdiv 10938  cn 11274  2c2 11327  0cn0 11538  cz 11624  cuz 11886  [,)cico 12379  [,]cicc 12380  ...cfz 12533  cfl 12799  cexp 13067  MblFncmbf 23672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-n0 11539  df-z 11625  df-uz 11887  df-ico 12383  df-fz 12534  df-fl 12801  df-seq 13009  df-exp 13068
This theorem is referenced by:  mbfi1fseqlem4  23776
  Copyright terms: Public domain W3C validator