Proof of Theorem mbfi1fseqlem3
Step | Hyp | Ref
| Expression |
1 | | mbfi1fseq.1 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ MblFn) |
2 | | mbfi1fseq.2 |
. . . 4
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
3 | | mbfi1fseq.3 |
. . . 4
⊢ 𝐽 = (𝑚 ∈ ℕ, 𝑦 ∈ ℝ ↦
((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚))) |
4 | | mbfi1fseq.4 |
. . . 4
⊢ 𝐺 = (𝑚 ∈ ℕ ↦ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝑚[,]𝑚), if((𝑚𝐽𝑥) ≤ 𝑚, (𝑚𝐽𝑥), 𝑚), 0))) |
5 | 1, 2, 3, 4 | mbfi1fseqlem2 24786 |
. . 3
⊢ (𝐴 ∈ ℕ → (𝐺‘𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) |
6 | 5 | adantl 481 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝐺‘𝐴) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0))) |
7 | | rge0ssre 13117 |
. . . . . . . . . . . . . . . . . 18
⊢
(0[,)+∞) ⊆ ℝ |
8 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ) → 𝑦 ∈
ℝ) |
9 | | ffvelrn 6941 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ 𝑦 ∈ ℝ)
→ (𝐹‘𝑦) ∈
(0[,)+∞)) |
10 | 2, 8, 9 | syl2an 595 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ (0[,)+∞)) |
11 | 7, 10 | sselid 3915 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (𝐹‘𝑦) ∈ ℝ) |
12 | | 2nn 11976 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℕ |
13 | | nnnn0 12170 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ0) |
14 | | nnexpcl 13723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((2
∈ ℕ ∧ 𝑚
∈ ℕ0) → (2↑𝑚) ∈ ℕ) |
15 | 12, 13, 14 | sylancr 586 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ ℕ →
(2↑𝑚) ∈
ℕ) |
16 | 15 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈
ℕ) |
17 | 16 | nnred 11918 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → (2↑𝑚) ∈
ℝ) |
18 | 11, 17 | remulcld 10936 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) → ((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ) |
19 | | reflcl 13444 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑦) · (2↑𝑚)) ∈ ℝ →
(⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) |
20 | 18, 19 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) →
(⌊‘((𝐹‘𝑦) · (2↑𝑚))) ∈ ℝ) |
21 | 20, 16 | nndivred 11957 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ)) →
((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ) |
22 | 21 | ralrimivva 3114 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑚 ∈ ℕ ∀𝑦 ∈ ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ) |
23 | 3 | fmpo 7881 |
. . . . . . . . . . . . 13
⊢
(∀𝑚 ∈
ℕ ∀𝑦 ∈
ℝ ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) ∈ ℝ ↔ 𝐽:(ℕ ×
ℝ)⟶ℝ) |
24 | 22, 23 | sylib 217 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽:(ℕ ×
ℝ)⟶ℝ) |
25 | | fovrn 7420 |
. . . . . . . . . . . 12
⊢ ((𝐽:(ℕ ×
ℝ)⟶ℝ ∧ 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ) |
26 | 24, 25 | syl3an1 1161 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ) |
27 | 26 | 3expa 1116 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) ∈ ℝ) |
28 | | nnre 11910 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ) |
29 | 28 | ad2antlr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ) |
30 | | nnnn0 12170 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℕ0) |
31 | | nnexpcl 13723 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℕ ∧ 𝐴
∈ ℕ0) → (2↑𝐴) ∈ ℕ) |
32 | 12, 30, 31 | sylancr 586 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ →
(2↑𝐴) ∈
ℕ) |
33 | 32 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈
ℕ) |
34 | | nnre 11910 |
. . . . . . . . . . . 12
⊢
((2↑𝐴) ∈
ℕ → (2↑𝐴)
∈ ℝ) |
35 | | nngt0 11934 |
. . . . . . . . . . . 12
⊢
((2↑𝐴) ∈
ℕ → 0 < (2↑𝐴)) |
36 | 34, 35 | jca 511 |
. . . . . . . . . . 11
⊢
((2↑𝐴) ∈
ℕ → ((2↑𝐴)
∈ ℝ ∧ 0 < (2↑𝐴))) |
37 | 33, 36 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((2↑𝐴) ∈ ℝ ∧ 0 <
(2↑𝐴))) |
38 | | lemul1 11757 |
. . . . . . . . . 10
⊢ (((𝐴𝐽𝑥) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((2↑𝐴) ∈ ℝ ∧ 0 <
(2↑𝐴))) → ((𝐴𝐽𝑥) ≤ 𝐴 ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴)))) |
39 | 27, 29, 37, 38 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐴𝐽𝑥) ≤ 𝐴 ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴)))) |
40 | 39 | biimpa 476 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴))) |
41 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 = 𝐴 ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) |
42 | 41 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 = 𝐴 ∧ 𝑦 = 𝑥) → (𝐹‘𝑦) = (𝐹‘𝑥)) |
43 | | simpl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 = 𝐴 ∧ 𝑦 = 𝑥) → 𝑚 = 𝐴) |
44 | 43 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 = 𝐴 ∧ 𝑦 = 𝑥) → (2↑𝑚) = (2↑𝐴)) |
45 | 42, 44 | oveq12d 7273 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 = 𝐴 ∧ 𝑦 = 𝑥) → ((𝐹‘𝑦) · (2↑𝑚)) = ((𝐹‘𝑥) · (2↑𝐴))) |
46 | 45 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 = 𝐴 ∧ 𝑦 = 𝑥) → (⌊‘((𝐹‘𝑦) · (2↑𝑚))) = (⌊‘((𝐹‘𝑥) · (2↑𝐴)))) |
47 | 46, 44 | oveq12d 7273 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 = 𝐴 ∧ 𝑦 = 𝑥) → ((⌊‘((𝐹‘𝑦) · (2↑𝑚))) / (2↑𝑚)) = ((⌊‘((𝐹‘𝑥) · (2↑𝐴))) / (2↑𝐴))) |
48 | | ovex 7288 |
. . . . . . . . . . . . . . 15
⊢
((⌊‘((𝐹‘𝑥) · (2↑𝐴))) / (2↑𝐴)) ∈ V |
49 | 47, 3, 48 | ovmpoa 7406 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ) → (𝐴𝐽𝑥) = ((⌊‘((𝐹‘𝑥) · (2↑𝐴))) / (2↑𝐴))) |
50 | 49 | ad4ant23 749 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) = ((⌊‘((𝐹‘𝑥) · (2↑𝐴))) / (2↑𝐴))) |
51 | 50 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) = (((⌊‘((𝐹‘𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑𝐴))) |
52 | 2 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → 𝐹:ℝ⟶(0[,)+∞)) |
53 | 52 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ (0[,)+∞)) |
54 | | elrege0 13115 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) |
55 | 53, 54 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) |
56 | 55 | simpld 494 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
57 | 33 | nnred 11918 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈
ℝ) |
58 | 56, 57 | remulcld 10936 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) · (2↑𝐴)) ∈ ℝ) |
59 | 33 | nnnn0d 12223 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈
ℕ0) |
60 | 59 | nn0ge0d 12226 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ (2↑𝐴)) |
61 | | mulge0 11423 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥)) ∧ ((2↑𝐴) ∈ ℝ ∧ 0 ≤ (2↑𝐴))) → 0 ≤ ((𝐹‘𝑥) · (2↑𝐴))) |
62 | 55, 57, 60, 61 | syl12anc 833 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ ((𝐹‘𝑥) · (2↑𝐴))) |
63 | | flge0nn0 13468 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹‘𝑥) · (2↑𝐴)) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑥) · (2↑𝐴))) → (⌊‘((𝐹‘𝑥) · (2↑𝐴))) ∈
ℕ0) |
64 | 58, 62, 63 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) →
(⌊‘((𝐹‘𝑥) · (2↑𝐴))) ∈
ℕ0) |
65 | 64 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (⌊‘((𝐹‘𝑥) · (2↑𝐴))) ∈
ℕ0) |
66 | 65 | nn0cnd 12225 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (⌊‘((𝐹‘𝑥) · (2↑𝐴))) ∈ ℂ) |
67 | 33 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (2↑𝐴) ∈ ℕ) |
68 | 67 | nncnd 11919 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (2↑𝐴) ∈ ℂ) |
69 | 67 | nnne0d 11953 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (2↑𝐴) ≠ 0) |
70 | 66, 68, 69 | divcan1d 11682 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (((⌊‘((𝐹‘𝑥) · (2↑𝐴))) / (2↑𝐴)) · (2↑𝐴)) = (⌊‘((𝐹‘𝑥) · (2↑𝐴)))) |
71 | 51, 70 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) = (⌊‘((𝐹‘𝑥) · (2↑𝐴)))) |
72 | 71, 65 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ∈
ℕ0) |
73 | | nn0uz 12549 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
74 | 72, 73 | eleqtrdi 2849 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ∈
(ℤ≥‘0)) |
75 | | nnmulcl 11927 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧
(2↑𝐴) ∈ ℕ)
→ (𝐴 ·
(2↑𝐴)) ∈
ℕ) |
76 | 32, 75 | mpdan 683 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ → (𝐴 · (2↑𝐴)) ∈
ℕ) |
77 | 76 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ ℕ) |
78 | 77 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴 · (2↑𝐴)) ∈ ℕ) |
79 | 78 | nnzd 12354 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴 · (2↑𝐴)) ∈ ℤ) |
80 | | elfz5 13177 |
. . . . . . . . 9
⊢ ((((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (ℤ≥‘0)
∧ (𝐴 ·
(2↑𝐴)) ∈ ℤ)
→ (((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴)))) |
81 | 74, 79, 80 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) ↔ ((𝐴𝐽𝑥) · (2↑𝐴)) ≤ (𝐴 · (2↑𝐴)))) |
82 | 40, 81 | mpbird 256 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) |
83 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑚 = ((𝐴𝐽𝑥) · (2↑𝐴)) → (𝑚 / (2↑𝐴)) = (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴))) |
84 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) = (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) |
85 | | ovex 7288 |
. . . . . . . 8
⊢ (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)) ∈ V |
86 | 83, 84, 85 | fvmpt 6857 |
. . . . . . 7
⊢ (((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) = (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴))) |
87 | 82, 86 | syl 17 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) = (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴))) |
88 | 27 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) ∈ ℝ) |
89 | 88 | recnd 10934 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) ∈ ℂ) |
90 | 89, 68, 69 | divcan4d 11687 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (((𝐴𝐽𝑥) · (2↑𝐴)) / (2↑𝐴)) = (𝐴𝐽𝑥)) |
91 | 87, 90 | eqtrd 2778 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) = (𝐴𝐽𝑥)) |
92 | | elfznn0 13278 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) → 𝑚 ∈ ℕ0) |
93 | 92 | nn0red 12224 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) → 𝑚 ∈ ℝ) |
94 | 32 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (2↑𝐴) ∈
ℕ) |
95 | | nndivre 11944 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℝ ∧
(2↑𝐴) ∈ ℕ)
→ (𝑚 / (2↑𝐴)) ∈
ℝ) |
96 | 93, 94, 95 | syl2anr 596 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑚 ∈ (0...(𝐴 · (2↑𝐴)))) → (𝑚 / (2↑𝐴)) ∈ ℝ) |
97 | 96 | fmpttd 6971 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))):(0...(𝐴 · (2↑𝐴)))⟶ℝ) |
98 | 97 | ffnd 6585 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴)))) |
99 | 98 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴)))) |
100 | 99 | adantr 480 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴)))) |
101 | | fnfvelrn 6940 |
. . . . . 6
⊢ (((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))) ∧ ((𝐴𝐽𝑥) · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
102 | 100, 82, 101 | syl2anc 583 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘((𝐴𝐽𝑥) · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
103 | 91, 102 | eqeltrrd 2840 |
. . . 4
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ (𝐴𝐽𝑥) ≤ 𝐴) → (𝐴𝐽𝑥) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
104 | 77 | nnnn0d 12223 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈
ℕ0) |
105 | 104, 73 | eleqtrdi 2849 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈
(ℤ≥‘0)) |
106 | | eluzfz2 13193 |
. . . . . . . . 9
⊢ ((𝐴 · (2↑𝐴)) ∈
(ℤ≥‘0) → (𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) |
107 | 105, 106 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) |
108 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑚 = (𝐴 · (2↑𝐴)) → (𝑚 / (2↑𝐴)) = ((𝐴 · (2↑𝐴)) / (2↑𝐴))) |
109 | | ovex 7288 |
. . . . . . . . 9
⊢ ((𝐴 · (2↑𝐴)) / (2↑𝐴)) ∈ V |
110 | 108, 84, 109 | fvmpt 6857 |
. . . . . . . 8
⊢ ((𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) = ((𝐴 · (2↑𝐴)) / (2↑𝐴))) |
111 | 107, 110 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) = ((𝐴 · (2↑𝐴)) / (2↑𝐴))) |
112 | 29 | recnd 10934 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℂ) |
113 | 33 | nncnd 11919 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ∈
ℂ) |
114 | 33 | nnne0d 11953 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (2↑𝐴) ≠ 0) |
115 | 112, 113,
114 | divcan4d 11687 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝐴 · (2↑𝐴)) / (2↑𝐴)) = 𝐴) |
116 | 111, 115 | eqtrd 2778 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) = 𝐴) |
117 | | fnfvelrn 6940 |
. . . . . . 7
⊢ (((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))) ∧ (𝐴 · (2↑𝐴)) ∈ (0...(𝐴 · (2↑𝐴)))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
118 | 99, 107, 117 | syl2anc 583 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘(𝐴 · (2↑𝐴))) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
119 | 116, 118 | eqeltrrd 2840 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
120 | 119 | adantr 480 |
. . . 4
⊢ ((((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐴𝐽𝑥) ≤ 𝐴) → 𝐴 ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
121 | 103, 120 | ifclda 4491 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
122 | | eluzfz1 13192 |
. . . . . . 7
⊢ ((𝐴 · (2↑𝐴)) ∈
(ℤ≥‘0) → 0 ∈ (0...(𝐴 · (2↑𝐴)))) |
123 | 105, 122 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ∈ (0...(𝐴 · (2↑𝐴)))) |
124 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑚 = 0 → (𝑚 / (2↑𝐴)) = (0 / (2↑𝐴))) |
125 | | ovex 7288 |
. . . . . . 7
⊢ (0 /
(2↑𝐴)) ∈
V |
126 | 124, 84, 125 | fvmpt 6857 |
. . . . . 6
⊢ (0 ∈
(0...(𝐴 ·
(2↑𝐴))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) = (0 / (2↑𝐴))) |
127 | 123, 126 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) = (0 / (2↑𝐴))) |
128 | | nncn 11911 |
. . . . . . 7
⊢
((2↑𝐴) ∈
ℕ → (2↑𝐴)
∈ ℂ) |
129 | | nnne0 11937 |
. . . . . . 7
⊢
((2↑𝐴) ∈
ℕ → (2↑𝐴)
≠ 0) |
130 | 128, 129 | div0d 11680 |
. . . . . 6
⊢
((2↑𝐴) ∈
ℕ → (0 / (2↑𝐴)) = 0) |
131 | 33, 130 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (0 / (2↑𝐴)) = 0) |
132 | 127, 131 | eqtrd 2778 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) = 0) |
133 | | fnfvelrn 6940 |
. . . . 5
⊢ (((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴))) Fn (0...(𝐴 · (2↑𝐴))) ∧ 0 ∈ (0...(𝐴 · (2↑𝐴)))) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
134 | 99, 123, 133 | syl2anc 583 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))‘0) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
135 | 132, 134 | eqeltrrd 2840 |
. . 3
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
136 | 121, 135 | ifcld 4502 |
. 2
⊢ (((𝜑 ∧ 𝐴 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (-𝐴[,]𝐴), if((𝐴𝐽𝑥) ≤ 𝐴, (𝐴𝐽𝑥), 𝐴), 0) ∈ ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |
137 | 6, 136 | fmpt3d 6972 |
1
⊢ ((𝜑 ∧ 𝐴 ∈ ℕ) → (𝐺‘𝐴):ℝ⟶ran (𝑚 ∈ (0...(𝐴 · (2↑𝐴))) ↦ (𝑚 / (2↑𝐴)))) |