Step | Hyp | Ref
| Expression |
1 | | eleq2 2827 |
. . 3
⊢ (𝑦 = ∅ → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ ∅)) |
2 | | fveq2 6774 |
. . . 4
⊢ (𝑦 = ∅ → (𝐹‘𝑦) = (𝐹‘∅)) |
3 | 2 | eleq2d 2824 |
. . 3
⊢ (𝑦 = ∅ → ((𝐹‘𝑧) ∈ (𝐹‘𝑦) ↔ (𝐹‘𝑧) ∈ (𝐹‘∅))) |
4 | 1, 3 | imbi12d 345 |
. 2
⊢ (𝑦 = ∅ → ((𝑧 ∈ 𝑦 → (𝐹‘𝑧) ∈ (𝐹‘𝑦)) ↔ (𝑧 ∈ ∅ → (𝐹‘𝑧) ∈ (𝐹‘∅)))) |
5 | | eleq2 2827 |
. . 3
⊢ (𝑦 = 𝑤 → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑤)) |
6 | | fveq2 6774 |
. . . 4
⊢ (𝑦 = 𝑤 → (𝐹‘𝑦) = (𝐹‘𝑤)) |
7 | 6 | eleq2d 2824 |
. . 3
⊢ (𝑦 = 𝑤 → ((𝐹‘𝑧) ∈ (𝐹‘𝑦) ↔ (𝐹‘𝑧) ∈ (𝐹‘𝑤))) |
8 | 5, 7 | imbi12d 345 |
. 2
⊢ (𝑦 = 𝑤 → ((𝑧 ∈ 𝑦 → (𝐹‘𝑧) ∈ (𝐹‘𝑦)) ↔ (𝑧 ∈ 𝑤 → (𝐹‘𝑧) ∈ (𝐹‘𝑤)))) |
9 | | eleq2 2827 |
. . 3
⊢ (𝑦 = suc 𝑤 → (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ suc 𝑤)) |
10 | | fveq2 6774 |
. . . 4
⊢ (𝑦 = suc 𝑤 → (𝐹‘𝑦) = (𝐹‘suc 𝑤)) |
11 | 10 | eleq2d 2824 |
. . 3
⊢ (𝑦 = suc 𝑤 → ((𝐹‘𝑧) ∈ (𝐹‘𝑦) ↔ (𝐹‘𝑧) ∈ (𝐹‘suc 𝑤))) |
12 | 9, 11 | imbi12d 345 |
. 2
⊢ (𝑦 = suc 𝑤 → ((𝑧 ∈ 𝑦 → (𝐹‘𝑧) ∈ (𝐹‘𝑦)) ↔ (𝑧 ∈ suc 𝑤 → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑤)))) |
13 | | noel 4264 |
. . . 4
⊢ ¬
𝑧 ∈
∅ |
14 | 13 | pm2.21i 119 |
. . 3
⊢ (𝑧 ∈ ∅ → (𝐹‘𝑧) ∈ (𝐹‘∅)) |
15 | 14 | a1i 11 |
. 2
⊢ (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹‘𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑧 ∈ ∅ → (𝐹‘𝑧) ∈ (𝐹‘∅))) |
16 | | vex 3436 |
. . . . . 6
⊢ 𝑧 ∈ V |
17 | 16 | elsuc 6335 |
. . . . 5
⊢ (𝑧 ∈ suc 𝑤 ↔ (𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤)) |
18 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
19 | | suceq 6331 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → suc 𝑥 = suc 𝑤) |
20 | 19 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (𝐹‘suc 𝑥) = (𝐹‘suc 𝑤)) |
21 | 18, 20 | eleq12d 2833 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) ∈ (𝐹‘suc 𝑥) ↔ (𝐹‘𝑤) ∈ (𝐹‘suc 𝑤))) |
22 | 21 | rspccva 3560 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
ω (𝐹‘𝑥) ∈ (𝐹‘suc 𝑥) ∧ 𝑤 ∈ ω) → (𝐹‘𝑤) ∈ (𝐹‘suc 𝑤)) |
23 | 22 | adantll 711 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹‘𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) → (𝐹‘𝑤) ∈ (𝐹‘suc 𝑤)) |
24 | | peano2b 7729 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ ω ↔ suc 𝑤 ∈
ω) |
25 | | ffvelrn 6959 |
. . . . . . . . . . . . 13
⊢ ((𝐹:ω⟶𝐴 ∧ suc 𝑤 ∈ ω) → (𝐹‘suc 𝑤) ∈ 𝐴) |
26 | 24, 25 | sylan2b 594 |
. . . . . . . . . . . 12
⊢ ((𝐹:ω⟶𝐴 ∧ 𝑤 ∈ ω) → (𝐹‘suc 𝑤) ∈ 𝐴) |
27 | | ssel 3914 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆ On → ((𝐹‘suc 𝑤) ∈ 𝐴 → (𝐹‘suc 𝑤) ∈ On)) |
28 | | ontr1 6312 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘suc 𝑤) ∈ On → (((𝐹‘𝑧) ∈ (𝐹‘𝑤) ∧ (𝐹‘𝑤) ∈ (𝐹‘suc 𝑤)) → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑤))) |
29 | 28 | expcomd 417 |
. . . . . . . . . . . 12
⊢ ((𝐹‘suc 𝑤) ∈ On → ((𝐹‘𝑤) ∈ (𝐹‘suc 𝑤) → ((𝐹‘𝑧) ∈ (𝐹‘𝑤) → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑤)))) |
30 | 26, 27, 29 | syl56 36 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ On → ((𝐹:ω⟶𝐴 ∧ 𝑤 ∈ ω) → ((𝐹‘𝑤) ∈ (𝐹‘suc 𝑤) → ((𝐹‘𝑧) ∈ (𝐹‘𝑤) → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑤))))) |
31 | 30 | impl 456 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ 𝑤 ∈ ω) → ((𝐹‘𝑤) ∈ (𝐹‘suc 𝑤) → ((𝐹‘𝑧) ∈ (𝐹‘𝑤) → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑤)))) |
32 | 31 | adantlr 712 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹‘𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) → ((𝐹‘𝑤) ∈ (𝐹‘suc 𝑤) → ((𝐹‘𝑧) ∈ (𝐹‘𝑤) → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑤)))) |
33 | 23, 32 | mpd 15 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹‘𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) → ((𝐹‘𝑧) ∈ (𝐹‘𝑤) → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑤))) |
34 | 33 | imim2d 57 |
. . . . . . 7
⊢ ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹‘𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) → ((𝑧 ∈ 𝑤 → (𝐹‘𝑧) ∈ (𝐹‘𝑤)) → (𝑧 ∈ 𝑤 → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑤)))) |
35 | 34 | imp 407 |
. . . . . 6
⊢
(((((𝐴 ⊆ On
∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹‘𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) ∧ (𝑧 ∈ 𝑤 → (𝐹‘𝑧) ∈ (𝐹‘𝑤))) → (𝑧 ∈ 𝑤 → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑤))) |
36 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝐹‘𝑧) = (𝐹‘𝑤)) |
37 | 36 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → ((𝐹‘𝑧) ∈ (𝐹‘suc 𝑤) ↔ (𝐹‘𝑤) ∈ (𝐹‘suc 𝑤))) |
38 | 22, 37 | syl5ibrcom 246 |
. . . . . . 7
⊢
((∀𝑥 ∈
ω (𝐹‘𝑥) ∈ (𝐹‘suc 𝑥) ∧ 𝑤 ∈ ω) → (𝑧 = 𝑤 → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑤))) |
39 | 38 | ad4ant23 750 |
. . . . . 6
⊢
(((((𝐴 ⊆ On
∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹‘𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) ∧ (𝑧 ∈ 𝑤 → (𝐹‘𝑧) ∈ (𝐹‘𝑤))) → (𝑧 = 𝑤 → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑤))) |
40 | 35, 39 | jaod 856 |
. . . . 5
⊢
(((((𝐴 ⊆ On
∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹‘𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) ∧ (𝑧 ∈ 𝑤 → (𝐹‘𝑧) ∈ (𝐹‘𝑤))) → ((𝑧 ∈ 𝑤 ∨ 𝑧 = 𝑤) → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑤))) |
41 | 17, 40 | syl5bi 241 |
. . . 4
⊢
(((((𝐴 ⊆ On
∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹‘𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) ∧ (𝑧 ∈ 𝑤 → (𝐹‘𝑧) ∈ (𝐹‘𝑤))) → (𝑧 ∈ suc 𝑤 → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑤))) |
42 | 41 | exp31 420 |
. . 3
⊢ (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹‘𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑤 ∈ ω → ((𝑧 ∈ 𝑤 → (𝐹‘𝑧) ∈ (𝐹‘𝑤)) → (𝑧 ∈ suc 𝑤 → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑤))))) |
43 | 42 | com12 32 |
. 2
⊢ (𝑤 ∈ ω → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹‘𝑥) ∈ (𝐹‘suc 𝑥)) → ((𝑧 ∈ 𝑤 → (𝐹‘𝑧) ∈ (𝐹‘𝑤)) → (𝑧 ∈ suc 𝑤 → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑤))))) |
44 | 4, 8, 12, 15, 43 | finds2 7747 |
1
⊢ (𝑦 ∈ ω → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹‘𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑧 ∈ 𝑦 → (𝐹‘𝑧) ∈ (𝐹‘𝑦)))) |