MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsmolem Structured version   Visualization version   GIF version

Theorem omsmolem 8624
Description: Lemma for omsmo 8625. (Contributed by NM, 30-Nov-2003.) (Revised by David Abernethy, 1-Jan-2014.)
Assertion
Ref Expression
omsmolem (𝑦 ∈ ω → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦))))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑥,𝑦,𝑧,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem omsmolem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2818 . . 3 (𝑦 = ∅ → (𝑧𝑦𝑧 ∈ ∅))
2 fveq2 6861 . . . 4 (𝑦 = ∅ → (𝐹𝑦) = (𝐹‘∅))
32eleq2d 2815 . . 3 (𝑦 = ∅ → ((𝐹𝑧) ∈ (𝐹𝑦) ↔ (𝐹𝑧) ∈ (𝐹‘∅)))
41, 3imbi12d 344 . 2 (𝑦 = ∅ → ((𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦)) ↔ (𝑧 ∈ ∅ → (𝐹𝑧) ∈ (𝐹‘∅))))
5 eleq2 2818 . . 3 (𝑦 = 𝑤 → (𝑧𝑦𝑧𝑤))
6 fveq2 6861 . . . 4 (𝑦 = 𝑤 → (𝐹𝑦) = (𝐹𝑤))
76eleq2d 2815 . . 3 (𝑦 = 𝑤 → ((𝐹𝑧) ∈ (𝐹𝑦) ↔ (𝐹𝑧) ∈ (𝐹𝑤)))
85, 7imbi12d 344 . 2 (𝑦 = 𝑤 → ((𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦)) ↔ (𝑧𝑤 → (𝐹𝑧) ∈ (𝐹𝑤))))
9 eleq2 2818 . . 3 (𝑦 = suc 𝑤 → (𝑧𝑦𝑧 ∈ suc 𝑤))
10 fveq2 6861 . . . 4 (𝑦 = suc 𝑤 → (𝐹𝑦) = (𝐹‘suc 𝑤))
1110eleq2d 2815 . . 3 (𝑦 = suc 𝑤 → ((𝐹𝑧) ∈ (𝐹𝑦) ↔ (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))
129, 11imbi12d 344 . 2 (𝑦 = suc 𝑤 → ((𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦)) ↔ (𝑧 ∈ suc 𝑤 → (𝐹𝑧) ∈ (𝐹‘suc 𝑤))))
13 noel 4304 . . . 4 ¬ 𝑧 ∈ ∅
1413pm2.21i 119 . . 3 (𝑧 ∈ ∅ → (𝐹𝑧) ∈ (𝐹‘∅))
1514a1i 11 . 2 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑧 ∈ ∅ → (𝐹𝑧) ∈ (𝐹‘∅)))
16 vex 3454 . . . . . 6 𝑧 ∈ V
1716elsuc 6407 . . . . 5 (𝑧 ∈ suc 𝑤 ↔ (𝑧𝑤𝑧 = 𝑤))
18 fveq2 6861 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
19 suceq 6403 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → suc 𝑥 = suc 𝑤)
2019fveq2d 6865 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (𝐹‘suc 𝑥) = (𝐹‘suc 𝑤))
2118, 20eleq12d 2823 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((𝐹𝑥) ∈ (𝐹‘suc 𝑥) ↔ (𝐹𝑤) ∈ (𝐹‘suc 𝑤)))
2221rspccva 3590 . . . . . . . . . 10 ((∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥) ∧ 𝑤 ∈ ω) → (𝐹𝑤) ∈ (𝐹‘suc 𝑤))
2322adantll 714 . . . . . . . . 9 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) → (𝐹𝑤) ∈ (𝐹‘suc 𝑤))
24 peano2b 7862 . . . . . . . . . . . . 13 (𝑤 ∈ ω ↔ suc 𝑤 ∈ ω)
25 ffvelcdm 7056 . . . . . . . . . . . . 13 ((𝐹:ω⟶𝐴 ∧ suc 𝑤 ∈ ω) → (𝐹‘suc 𝑤) ∈ 𝐴)
2624, 25sylan2b 594 . . . . . . . . . . . 12 ((𝐹:ω⟶𝐴𝑤 ∈ ω) → (𝐹‘suc 𝑤) ∈ 𝐴)
27 ssel 3943 . . . . . . . . . . . 12 (𝐴 ⊆ On → ((𝐹‘suc 𝑤) ∈ 𝐴 → (𝐹‘suc 𝑤) ∈ On))
28 ontr1 6382 . . . . . . . . . . . . 13 ((𝐹‘suc 𝑤) ∈ On → (((𝐹𝑧) ∈ (𝐹𝑤) ∧ (𝐹𝑤) ∈ (𝐹‘suc 𝑤)) → (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))
2928expcomd 416 . . . . . . . . . . . 12 ((𝐹‘suc 𝑤) ∈ On → ((𝐹𝑤) ∈ (𝐹‘suc 𝑤) → ((𝐹𝑧) ∈ (𝐹𝑤) → (𝐹𝑧) ∈ (𝐹‘suc 𝑤))))
3026, 27, 29syl56 36 . . . . . . . . . . 11 (𝐴 ⊆ On → ((𝐹:ω⟶𝐴𝑤 ∈ ω) → ((𝐹𝑤) ∈ (𝐹‘suc 𝑤) → ((𝐹𝑧) ∈ (𝐹𝑤) → (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))))
3130impl 455 . . . . . . . . . 10 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ 𝑤 ∈ ω) → ((𝐹𝑤) ∈ (𝐹‘suc 𝑤) → ((𝐹𝑧) ∈ (𝐹𝑤) → (𝐹𝑧) ∈ (𝐹‘suc 𝑤))))
3231adantlr 715 . . . . . . . . 9 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) → ((𝐹𝑤) ∈ (𝐹‘suc 𝑤) → ((𝐹𝑧) ∈ (𝐹𝑤) → (𝐹𝑧) ∈ (𝐹‘suc 𝑤))))
3323, 32mpd 15 . . . . . . . 8 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) → ((𝐹𝑧) ∈ (𝐹𝑤) → (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))
3433imim2d 57 . . . . . . 7 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) → ((𝑧𝑤 → (𝐹𝑧) ∈ (𝐹𝑤)) → (𝑧𝑤 → (𝐹𝑧) ∈ (𝐹‘suc 𝑤))))
3534imp 406 . . . . . 6 (((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) ∧ (𝑧𝑤 → (𝐹𝑧) ∈ (𝐹𝑤))) → (𝑧𝑤 → (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))
36 fveq2 6861 . . . . . . . . 9 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
3736eleq1d 2814 . . . . . . . 8 (𝑧 = 𝑤 → ((𝐹𝑧) ∈ (𝐹‘suc 𝑤) ↔ (𝐹𝑤) ∈ (𝐹‘suc 𝑤)))
3822, 37syl5ibrcom 247 . . . . . . 7 ((∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥) ∧ 𝑤 ∈ ω) → (𝑧 = 𝑤 → (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))
3938ad4ant23 753 . . . . . 6 (((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) ∧ (𝑧𝑤 → (𝐹𝑧) ∈ (𝐹𝑤))) → (𝑧 = 𝑤 → (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))
4035, 39jaod 859 . . . . 5 (((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) ∧ (𝑧𝑤 → (𝐹𝑧) ∈ (𝐹𝑤))) → ((𝑧𝑤𝑧 = 𝑤) → (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))
4117, 40biimtrid 242 . . . 4 (((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ 𝑤 ∈ ω) ∧ (𝑧𝑤 → (𝐹𝑧) ∈ (𝐹𝑤))) → (𝑧 ∈ suc 𝑤 → (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))
4241exp31 419 . . 3 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑤 ∈ ω → ((𝑧𝑤 → (𝐹𝑧) ∈ (𝐹𝑤)) → (𝑧 ∈ suc 𝑤 → (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))))
4342com12 32 . 2 (𝑤 ∈ ω → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → ((𝑧𝑤 → (𝐹𝑧) ∈ (𝐹𝑤)) → (𝑧 ∈ suc 𝑤 → (𝐹𝑧) ∈ (𝐹‘suc 𝑤)))))
444, 8, 12, 15, 43finds2 7877 1 (𝑦 ∈ ω → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045  wss 3917  c0 4299  Oncon0 6335  suc csuc 6337  wf 6510  cfv 6514  ωcom 7845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-om 7846
This theorem is referenced by:  omsmo  8625
  Copyright terms: Public domain W3C validator