MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfacfisfcpmat Structured version   Visualization version   GIF version

Theorem chfacfisfcpmat 22004
Description: The "characteristic factor function" is a function from the nonnegative integers to constant polynomial matrices. (Contributed by AV, 19-Nov-2019.)
Hypotheses
Ref Expression
chfacfisf.a 𝐴 = (𝑁 Mat 𝑅)
chfacfisf.b 𝐵 = (Base‘𝐴)
chfacfisf.p 𝑃 = (Poly1𝑅)
chfacfisf.y 𝑌 = (𝑁 Mat 𝑃)
chfacfisf.r × = (.r𝑌)
chfacfisf.s = (-g𝑌)
chfacfisf.0 0 = (0g𝑌)
chfacfisf.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chfacfisf.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
chfacfisfcpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
Assertion
Ref Expression
chfacfisfcpmat (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0𝑆)
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑌   𝑛,𝑏   𝑛,𝑠   𝑆,𝑛
Allowed substitution hints:   𝐴(𝑛,𝑠,𝑏)   𝐵(𝑠,𝑏)   𝑃(𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑆(𝑠,𝑏)   𝑇(𝑛,𝑠,𝑏)   × (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑌(𝑠,𝑏)   0 (𝑛,𝑠,𝑏)

Proof of Theorem chfacfisfcpmat
StepHypRef Expression
1 chfacfisfcpmat.s . . . . . . . 8 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 chfacfisf.p . . . . . . . 8 𝑃 = (Poly1𝑅)
3 chfacfisf.y . . . . . . . 8 𝑌 = (𝑁 Mat 𝑃)
41, 2, 3cpmatsubgpmat 21869 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝑌))
543adant3 1131 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑆 ∈ (SubGrp‘𝑌))
65adantr 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑆 ∈ (SubGrp‘𝑌))
7 subgsubm 18777 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝑌) → 𝑆 ∈ (SubMnd‘𝑌))
8 chfacfisf.0 . . . . . . . 8 0 = (0g𝑌)
98subm0cl 18450 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝑌) → 0𝑆)
105, 7, 93syl 18 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 0𝑆)
1110adantr 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 0𝑆)
121, 2, 3cpmatsrgpmat 21870 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝑌))
13123adant3 1131 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑆 ∈ (SubRing‘𝑌))
1413adantr 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑆 ∈ (SubRing‘𝑌))
15 chfacfisf.t . . . . . . . 8 𝑇 = (𝑁 matToPolyMat 𝑅)
16 chfacfisf.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
17 chfacfisf.b . . . . . . . 8 𝐵 = (Base‘𝐴)
181, 15, 16, 17m2cpm 21890 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ 𝑆)
1918adantr 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇𝑀) ∈ 𝑆)
20 3simpa 1147 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
21 elmapi 8637 . . . . . . . . . . 11 (𝑏 ∈ (𝐵m (0...𝑠)) → 𝑏:(0...𝑠)⟶𝐵)
2221adantl 482 . . . . . . . . . 10 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑏:(0...𝑠)⟶𝐵)
23 nnnn0 12240 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ → 𝑠 ∈ ℕ0)
24 nn0uz 12620 . . . . . . . . . . . . 13 0 = (ℤ‘0)
2523, 24eleqtrdi 2849 . . . . . . . . . . . 12 (𝑠 ∈ ℕ → 𝑠 ∈ (ℤ‘0))
26 eluzfz1 13263 . . . . . . . . . . . 12 (𝑠 ∈ (ℤ‘0) → 0 ∈ (0...𝑠))
2725, 26syl 17 . . . . . . . . . . 11 (𝑠 ∈ ℕ → 0 ∈ (0...𝑠))
2827adantr 481 . . . . . . . . . 10 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 0 ∈ (0...𝑠))
2922, 28ffvelrnd 6962 . . . . . . . . 9 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑏‘0) ∈ 𝐵)
3020, 29anim12i 613 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑏‘0) ∈ 𝐵))
31 df-3an 1088 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑏‘0) ∈ 𝐵))
3230, 31sylibr 233 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵))
331, 15, 16, 17m2cpm 21890 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) → (𝑇‘(𝑏‘0)) ∈ 𝑆)
3432, 33syl 17 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏‘0)) ∈ 𝑆)
35 chfacfisf.r . . . . . . 7 × = (.r𝑌)
3635subrgmcl 20036 . . . . . 6 ((𝑆 ∈ (SubRing‘𝑌) ∧ (𝑇𝑀) ∈ 𝑆 ∧ (𝑇‘(𝑏‘0)) ∈ 𝑆) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ 𝑆)
3714, 19, 34, 36syl3anc 1370 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ 𝑆)
38 chfacfisf.s . . . . . 6 = (-g𝑌)
3938subgsubcl 18766 . . . . 5 ((𝑆 ∈ (SubGrp‘𝑌) ∧ 0𝑆 ∧ ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ 𝑆) → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) ∈ 𝑆)
406, 11, 37, 39syl3anc 1370 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) ∈ 𝑆)
4140ad2antrr 723 . . 3 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) ∈ 𝑆)
42 simpl1 1190 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑁 ∈ Fin)
43 simpl2 1191 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑅 ∈ Ring)
4422adantl 482 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑏:(0...𝑠)⟶𝐵)
45 eluzfz2 13264 . . . . . . . . . 10 (𝑠 ∈ (ℤ‘0) → 𝑠 ∈ (0...𝑠))
4625, 45syl 17 . . . . . . . . 9 (𝑠 ∈ ℕ → 𝑠 ∈ (0...𝑠))
4746ad2antrl 725 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ (0...𝑠))
4844, 47ffvelrnd 6962 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑏𝑠) ∈ 𝐵)
491, 15, 16, 17m2cpm 21890 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏𝑠) ∈ 𝐵) → (𝑇‘(𝑏𝑠)) ∈ 𝑆)
5042, 43, 48, 49syl3anc 1370 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏𝑠)) ∈ 𝑆)
5150adantr 481 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑏𝑠)) ∈ 𝑆)
5251ad2antrr 723 . . . 4 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 = (𝑠 + 1)) → (𝑇‘(𝑏𝑠)) ∈ 𝑆)
5311ad4antr 729 . . . . 5 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ (𝑠 + 1) < 𝑛) → 0𝑆)
54 nn0re 12242 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
5554adantl 482 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℝ)
56 peano2nn 11985 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℕ)
5756nnred 11988 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℝ)
5857adantr 481 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑠 + 1) ∈ ℝ)
5955, 58lenltd 11121 . . . . . . . . . . . . 13 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑛 ≤ (𝑠 + 1) ↔ ¬ (𝑠 + 1) < 𝑛))
60 nesym 3000 . . . . . . . . . . . . . . 15 ((𝑠 + 1) ≠ 𝑛 ↔ ¬ 𝑛 = (𝑠 + 1))
61 ltlen 11076 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℝ ∧ (𝑠 + 1) ∈ ℝ) → (𝑛 < (𝑠 + 1) ↔ (𝑛 ≤ (𝑠 + 1) ∧ (𝑠 + 1) ≠ 𝑛)))
6254, 57, 61syl2anr 597 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑛 < (𝑠 + 1) ↔ (𝑛 ≤ (𝑠 + 1) ∧ (𝑠 + 1) ≠ 𝑛)))
6362biimprd 247 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (𝑠 + 1) ∧ (𝑠 + 1) ≠ 𝑛) → 𝑛 < (𝑠 + 1)))
6463expcomd 417 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → ((𝑠 + 1) ≠ 𝑛 → (𝑛 ≤ (𝑠 + 1) → 𝑛 < (𝑠 + 1))))
6560, 64syl5bir 242 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (¬ 𝑛 = (𝑠 + 1) → (𝑛 ≤ (𝑠 + 1) → 𝑛 < (𝑠 + 1))))
6665com23 86 . . . . . . . . . . . . 13 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑛 ≤ (𝑠 + 1) → (¬ 𝑛 = (𝑠 + 1) → 𝑛 < (𝑠 + 1))))
6759, 66sylbird 259 . . . . . . . . . . . 12 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (¬ (𝑠 + 1) < 𝑛 → (¬ 𝑛 = (𝑠 + 1) → 𝑛 < (𝑠 + 1))))
6867impcomd 412 . . . . . . . . . . 11 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1)))
6968ex 413 . . . . . . . . . 10 (𝑠 ∈ ℕ → (𝑛 ∈ ℕ0 → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1))))
7069ad2antrl 725 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑛 ∈ ℕ0 → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1))))
7170imp 407 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1)))
7271adantr 481 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1)))
735ad4antr 729 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → 𝑆 ∈ (SubGrp‘𝑌))
7420ad4antr 729 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
7522ad4antlr 730 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → 𝑏:(0...𝑠)⟶𝐵)
76 neqne 2951 . . . . . . . . . . . . . . . . 17 𝑛 = 0 → 𝑛 ≠ 0)
7776anim2i 617 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0) → (𝑛 ∈ ℕ0𝑛 ≠ 0))
78 elnnne0 12247 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℕ0𝑛 ≠ 0))
7977, 78sylibr 233 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℕ)
80 nnm1nn0 12274 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
8179, 80syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0) → (𝑛 − 1) ∈ ℕ0)
8281ad4ant23 750 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑛 − 1) ∈ ℕ0)
8323adantr 481 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑠 ∈ ℕ0)
8483ad4antlr 730 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → 𝑠 ∈ ℕ0)
8562simprbda 499 . . . . . . . . . . . . . . . . . . 19 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛 ≤ (𝑠 + 1))
8655adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛 ∈ ℝ)
87 1red 10976 . . . . . . . . . . . . . . . . . . . 20 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 1 ∈ ℝ)
88 nnre 11980 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℕ → 𝑠 ∈ ℝ)
8988ad2antrr 723 . . . . . . . . . . . . . . . . . . . 20 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑠 ∈ ℝ)
9086, 87, 89lesubaddd 11572 . . . . . . . . . . . . . . . . . . 19 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → ((𝑛 − 1) ≤ 𝑠𝑛 ≤ (𝑠 + 1)))
9185, 90mpbird 256 . . . . . . . . . . . . . . . . . 18 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑛 − 1) ≤ 𝑠)
9291exp31 420 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ → (𝑛 ∈ ℕ0 → (𝑛 < (𝑠 + 1) → (𝑛 − 1) ≤ 𝑠)))
9392ad2antrl 725 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑛 ∈ ℕ0 → (𝑛 < (𝑠 + 1) → (𝑛 − 1) ≤ 𝑠)))
9493imp 407 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → (𝑛 < (𝑠 + 1) → (𝑛 − 1) ≤ 𝑠))
9594adantr 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (𝑛 < (𝑠 + 1) → (𝑛 − 1) ≤ 𝑠))
9695imp 407 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑛 − 1) ≤ 𝑠)
97 elfz2nn0 13347 . . . . . . . . . . . . 13 ((𝑛 − 1) ∈ (0...𝑠) ↔ ((𝑛 − 1) ∈ ℕ0𝑠 ∈ ℕ0 ∧ (𝑛 − 1) ≤ 𝑠))
9882, 84, 96, 97syl3anbrc 1342 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑛 − 1) ∈ (0...𝑠))
9975, 98ffvelrnd 6962 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑏‘(𝑛 − 1)) ∈ 𝐵)
100 df-3an 1088 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑛 − 1)) ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑏‘(𝑛 − 1)) ∈ 𝐵))
10174, 99, 100sylanbrc 583 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑛 − 1)) ∈ 𝐵))
1021, 15, 16, 17m2cpm 21890 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑛 − 1)) ∈ 𝐵) → (𝑇‘(𝑏‘(𝑛 − 1))) ∈ 𝑆)
103101, 102syl 17 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑇‘(𝑏‘(𝑛 − 1))) ∈ 𝑆)
10414ad2antrr 723 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑆 ∈ (SubRing‘𝑌))
10519ad2antrr 723 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑇𝑀) ∈ 𝑆)
10620, 83anim12i 613 . . . . . . . . . . . . . . 15 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑠 ∈ ℕ0))
107 df-3an 1088 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑠 ∈ ℕ0))
108106, 107sylibr 233 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0))
109108ad2antrr 723 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0))
110109simp1d 1141 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑁 ∈ Fin)
111109simp2d 1142 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑅 ∈ Ring)
11244ad2antrr 723 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑏:(0...𝑠)⟶𝐵)
113 simplr 766 . . . . . . . . . . . . . . . . 17 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛 ∈ ℕ0)
11423ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑠 ∈ ℕ0)
115 nn0z 12343 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
116 nnz 12342 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ℕ → 𝑠 ∈ ℤ)
117 zleltp1 12371 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑛𝑠𝑛 < (𝑠 + 1)))
118115, 116, 117syl2anr 597 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑛𝑠𝑛 < (𝑠 + 1)))
119118biimpar 478 . . . . . . . . . . . . . . . . 17 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛𝑠)
120 elfz2nn0 13347 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (0...𝑠) ↔ (𝑛 ∈ ℕ0𝑠 ∈ ℕ0𝑛𝑠))
121113, 114, 119, 120syl3anbrc 1342 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛 ∈ (0...𝑠))
122121exp31 420 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℕ → (𝑛 ∈ ℕ0 → (𝑛 < (𝑠 + 1) → 𝑛 ∈ (0...𝑠))))
123122ad2antrl 725 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑛 ∈ ℕ0 → (𝑛 < (𝑠 + 1) → 𝑛 ∈ (0...𝑠))))
124123imp31 418 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛 ∈ (0...𝑠))
125112, 124ffvelrnd 6962 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑏𝑛) ∈ 𝐵)
1261, 15, 16, 17m2cpm 21890 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏𝑛) ∈ 𝐵) → (𝑇‘(𝑏𝑛)) ∈ 𝑆)
127110, 111, 125, 126syl3anc 1370 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑇‘(𝑏𝑛)) ∈ 𝑆)
12835subrgmcl 20036 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘𝑌) ∧ (𝑇𝑀) ∈ 𝑆 ∧ (𝑇‘(𝑏𝑛)) ∈ 𝑆) → ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) ∈ 𝑆)
129104, 105, 127, 128syl3anc 1370 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) ∈ 𝑆)
130129adantlr 712 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) ∈ 𝑆)
13138subgsubcl 18766 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝑌) ∧ (𝑇‘(𝑏‘(𝑛 − 1))) ∈ 𝑆 ∧ ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) ∈ 𝑆) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) ∈ 𝑆)
13273, 103, 130, 131syl3anc 1370 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) ∈ 𝑆)
133132ex 413 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (𝑛 < (𝑠 + 1) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) ∈ 𝑆))
13472, 133syld 47 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) ∈ 𝑆))
135134impl 456 . . . . 5 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) ∈ 𝑆)
13653, 135ifclda 4494 . . . 4 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) → if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))) ∈ 𝑆)
13752, 136ifclda 4494 . . 3 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))) ∈ 𝑆)
13841, 137ifclda 4494 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) ∈ 𝑆)
139 chfacfisf.g . 2 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
140138, 139fmptd 6988 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  ifcif 4459   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205  cn 11973  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239  Basecbs 16912  .rcmulr 16963  0gc0g 17150  SubMndcsubmnd 18429  -gcsg 18579  SubGrpcsubg 18749  Ringcrg 19783  SubRingcsubrg 20020  Poly1cpl1 21348   Mat cmat 21554   ConstPolyMat ccpmat 21852   matToPolyMat cmat2pmat 21853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-srg 19742  df-ring 19785  df-subrg 20022  df-lmod 20125  df-lss 20194  df-sra 20434  df-rgmod 20435  df-dsmm 20939  df-frlm 20954  df-ascl 21062  df-psr 21112  df-mvr 21113  df-mpl 21114  df-opsr 21116  df-psr1 21351  df-vr1 21352  df-ply1 21353  df-coe1 21354  df-mamu 21533  df-mat 21555  df-cpmat 21855  df-mat2pmat 21856
This theorem is referenced by:  cpmadumatpolylem1  22030  cpmadumatpolylem2  22031  cpmadumatpoly  22032  chcoeffeqlem  22034  cayhamlem4  22037
  Copyright terms: Public domain W3C validator