Proof of Theorem chfacfisfcpmat
Step | Hyp | Ref
| Expression |
1 | | chfacfisfcpmat.s |
. . . . . . . 8
⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
2 | | chfacfisf.p |
. . . . . . . 8
⊢ 𝑃 = (Poly1‘𝑅) |
3 | | chfacfisf.y |
. . . . . . . 8
⊢ 𝑌 = (𝑁 Mat 𝑃) |
4 | 1, 2, 3 | cpmatsubgpmat 21869 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝑌)) |
5 | 4 | 3adant3 1131 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑆 ∈ (SubGrp‘𝑌)) |
6 | 5 | adantr 481 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑆 ∈ (SubGrp‘𝑌)) |
7 | | subgsubm 18777 |
. . . . . . 7
⊢ (𝑆 ∈ (SubGrp‘𝑌) → 𝑆 ∈ (SubMnd‘𝑌)) |
8 | | chfacfisf.0 |
. . . . . . . 8
⊢ 0 =
(0g‘𝑌) |
9 | 8 | subm0cl 18450 |
. . . . . . 7
⊢ (𝑆 ∈ (SubMnd‘𝑌) → 0 ∈ 𝑆) |
10 | 5, 7, 9 | 3syl 18 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 0 ∈ 𝑆) |
11 | 10 | adantr 481 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 0 ∈ 𝑆) |
12 | 1, 2, 3 | cpmatsrgpmat 21870 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubRing‘𝑌)) |
13 | 12 | 3adant3 1131 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑆 ∈ (SubRing‘𝑌)) |
14 | 13 | adantr 481 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑆 ∈ (SubRing‘𝑌)) |
15 | | chfacfisf.t |
. . . . . . . 8
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
16 | | chfacfisf.a |
. . . . . . . 8
⊢ 𝐴 = (𝑁 Mat 𝑅) |
17 | | chfacfisf.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐴) |
18 | 1, 15, 16, 17 | m2cpm 21890 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) ∈ 𝑆) |
19 | 18 | adantr 481 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑇‘𝑀) ∈ 𝑆) |
20 | | 3simpa 1147 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
21 | | elmapi 8637 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ (𝐵 ↑m (0...𝑠)) → 𝑏:(0...𝑠)⟶𝐵) |
22 | 21 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑏:(0...𝑠)⟶𝐵) |
23 | | nnnn0 12240 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
ℕ0) |
24 | | nn0uz 12620 |
. . . . . . . . . . . . 13
⊢
ℕ0 = (ℤ≥‘0) |
25 | 23, 24 | eleqtrdi 2849 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
(ℤ≥‘0)) |
26 | | eluzfz1 13263 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑠)) |
27 | 25, 26 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ ℕ → 0 ∈
(0...𝑠)) |
28 | 27 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 0 ∈ (0...𝑠)) |
29 | 22, 28 | ffvelrnd 6962 |
. . . . . . . . 9
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑏‘0) ∈ 𝐵) |
30 | 20, 29 | anim12i 613 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑏‘0) ∈ 𝐵)) |
31 | | df-3an 1088 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑏‘0) ∈ 𝐵)) |
32 | 30, 31 | sylibr 233 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵)) |
33 | 1, 15, 16, 17 | m2cpm 21890 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) → (𝑇‘(𝑏‘0)) ∈ 𝑆) |
34 | 32, 33 | syl 17 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑇‘(𝑏‘0)) ∈ 𝑆) |
35 | | chfacfisf.r |
. . . . . . 7
⊢ × =
(.r‘𝑌) |
36 | 35 | subrgmcl 20036 |
. . . . . 6
⊢ ((𝑆 ∈ (SubRing‘𝑌) ∧ (𝑇‘𝑀) ∈ 𝑆 ∧ (𝑇‘(𝑏‘0)) ∈ 𝑆) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))) ∈ 𝑆) |
37 | 14, 19, 34, 36 | syl3anc 1370 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))) ∈ 𝑆) |
38 | | chfacfisf.s |
. . . . . 6
⊢ − =
(-g‘𝑌) |
39 | 38 | subgsubcl 18766 |
. . . . 5
⊢ ((𝑆 ∈ (SubGrp‘𝑌) ∧ 0 ∈ 𝑆 ∧ ((𝑇‘𝑀) × (𝑇‘(𝑏‘0))) ∈ 𝑆) → ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) ∈ 𝑆) |
40 | 6, 11, 37, 39 | syl3anc 1370 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) ∈ 𝑆) |
41 | 40 | ad2antrr 723 |
. . 3
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))) ∈ 𝑆) |
42 | | simpl1 1190 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑁 ∈ Fin) |
43 | | simpl2 1191 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑅 ∈ Ring) |
44 | 22 | adantl 482 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑏:(0...𝑠)⟶𝐵) |
45 | | eluzfz2 13264 |
. . . . . . . . . 10
⊢ (𝑠 ∈
(ℤ≥‘0) → 𝑠 ∈ (0...𝑠)) |
46 | 25, 45 | syl 17 |
. . . . . . . . 9
⊢ (𝑠 ∈ ℕ → 𝑠 ∈ (0...𝑠)) |
47 | 46 | ad2antrl 725 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑠 ∈ (0...𝑠)) |
48 | 44, 47 | ffvelrnd 6962 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑏‘𝑠) ∈ 𝐵) |
49 | 1, 15, 16, 17 | m2cpm 21890 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘𝑠) ∈ 𝐵) → (𝑇‘(𝑏‘𝑠)) ∈ 𝑆) |
50 | 42, 43, 48, 49 | syl3anc 1370 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑇‘(𝑏‘𝑠)) ∈ 𝑆) |
51 | 50 | adantr 481 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑏‘𝑠)) ∈ 𝑆) |
52 | 51 | ad2antrr 723 |
. . . 4
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) ∧ 𝑛 = (𝑠 + 1)) → (𝑇‘(𝑏‘𝑠)) ∈ 𝑆) |
53 | 11 | ad4antr 729 |
. . . . 5
⊢
(((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ (𝑠 + 1) < 𝑛) → 0 ∈ 𝑆) |
54 | | nn0re 12242 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℝ) |
55 | 54 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
→ 𝑛 ∈
ℝ) |
56 | | peano2nn 11985 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ℕ → (𝑠 + 1) ∈
ℕ) |
57 | 56 | nnred 11988 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ ℕ → (𝑠 + 1) ∈
ℝ) |
58 | 57 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
→ (𝑠 + 1) ∈
ℝ) |
59 | 55, 58 | lenltd 11121 |
. . . . . . . . . . . . 13
⊢ ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
→ (𝑛 ≤ (𝑠 + 1) ↔ ¬ (𝑠 + 1) < 𝑛)) |
60 | | nesym 3000 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 + 1) ≠ 𝑛 ↔ ¬ 𝑛 = (𝑠 + 1)) |
61 | | ltlen 11076 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℝ ∧ (𝑠 + 1) ∈ ℝ) →
(𝑛 < (𝑠 + 1) ↔ (𝑛 ≤ (𝑠 + 1) ∧ (𝑠 + 1) ≠ 𝑛))) |
62 | 54, 57, 61 | syl2anr 597 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
→ (𝑛 < (𝑠 + 1) ↔ (𝑛 ≤ (𝑠 + 1) ∧ (𝑠 + 1) ≠ 𝑛))) |
63 | 62 | biimprd 247 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
→ ((𝑛 ≤ (𝑠 + 1) ∧ (𝑠 + 1) ≠ 𝑛) → 𝑛 < (𝑠 + 1))) |
64 | 63 | expcomd 417 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
→ ((𝑠 + 1) ≠ 𝑛 → (𝑛 ≤ (𝑠 + 1) → 𝑛 < (𝑠 + 1)))) |
65 | 60, 64 | syl5bir 242 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
→ (¬ 𝑛 = (𝑠 + 1) → (𝑛 ≤ (𝑠 + 1) → 𝑛 < (𝑠 + 1)))) |
66 | 65 | com23 86 |
. . . . . . . . . . . . 13
⊢ ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
→ (𝑛 ≤ (𝑠 + 1) → (¬ 𝑛 = (𝑠 + 1) → 𝑛 < (𝑠 + 1)))) |
67 | 59, 66 | sylbird 259 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
→ (¬ (𝑠 + 1) <
𝑛 → (¬ 𝑛 = (𝑠 + 1) → 𝑛 < (𝑠 + 1)))) |
68 | 67 | impcomd 412 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
→ ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1))) |
69 | 68 | ex 413 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℕ → (𝑛 ∈ ℕ0
→ ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1)))) |
70 | 69 | ad2antrl 725 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑛 ∈ ℕ0 → ((¬
𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1)))) |
71 | 70 | imp 407 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → ((¬
𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1))) |
72 | 71 | adantr 481 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1))) |
73 | 5 | ad4antr 729 |
. . . . . . . . 9
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → 𝑆 ∈ (SubGrp‘𝑌)) |
74 | 20 | ad4antr 729 |
. . . . . . . . . . 11
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) |
75 | 22 | ad4antlr 730 |
. . . . . . . . . . . 12
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → 𝑏:(0...𝑠)⟶𝐵) |
76 | | neqne 2951 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑛 = 0 → 𝑛 ≠ 0) |
77 | 76 | anim2i 617 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℕ0
∧ ¬ 𝑛 = 0) →
(𝑛 ∈
ℕ0 ∧ 𝑛
≠ 0)) |
78 | | elnnne0 12247 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℕ0
∧ 𝑛 ≠
0)) |
79 | 77, 78 | sylibr 233 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0
∧ ¬ 𝑛 = 0) →
𝑛 ∈
ℕ) |
80 | | nnm1nn0 12274 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (𝑛 − 1) ∈
ℕ0) |
81 | 79, 80 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0
∧ ¬ 𝑛 = 0) →
(𝑛 − 1) ∈
ℕ0) |
82 | 81 | ad4ant23 750 |
. . . . . . . . . . . . 13
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑛 − 1) ∈
ℕ0) |
83 | 23 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → 𝑠 ∈ ℕ0) |
84 | 83 | ad4antlr 730 |
. . . . . . . . . . . . 13
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → 𝑠 ∈ ℕ0) |
85 | 62 | simprbda 499 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
∧ 𝑛 < (𝑠 + 1)) → 𝑛 ≤ (𝑠 + 1)) |
86 | 55 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
∧ 𝑛 < (𝑠 + 1)) → 𝑛 ∈ ℝ) |
87 | | 1red 10976 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
∧ 𝑛 < (𝑠 + 1)) → 1 ∈
ℝ) |
88 | | nnre 11980 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
ℝ) |
89 | 88 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
∧ 𝑛 < (𝑠 + 1)) → 𝑠 ∈ ℝ) |
90 | 86, 87, 89 | lesubaddd 11572 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
∧ 𝑛 < (𝑠 + 1)) → ((𝑛 − 1) ≤ 𝑠 ↔ 𝑛 ≤ (𝑠 + 1))) |
91 | 85, 90 | mpbird 256 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
∧ 𝑛 < (𝑠 + 1)) → (𝑛 − 1) ≤ 𝑠) |
92 | 91 | exp31 420 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 ∈ ℕ → (𝑛 ∈ ℕ0
→ (𝑛 < (𝑠 + 1) → (𝑛 − 1) ≤ 𝑠))) |
93 | 92 | ad2antrl 725 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑛 ∈ ℕ0 → (𝑛 < (𝑠 + 1) → (𝑛 − 1) ≤ 𝑠))) |
94 | 93 | imp 407 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → (𝑛 < (𝑠 + 1) → (𝑛 − 1) ≤ 𝑠)) |
95 | 94 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → (𝑛 < (𝑠 + 1) → (𝑛 − 1) ≤ 𝑠)) |
96 | 95 | imp 407 |
. . . . . . . . . . . . 13
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑛 − 1) ≤ 𝑠) |
97 | | elfz2nn0 13347 |
. . . . . . . . . . . . 13
⊢ ((𝑛 − 1) ∈ (0...𝑠) ↔ ((𝑛 − 1) ∈ ℕ0 ∧
𝑠 ∈
ℕ0 ∧ (𝑛 − 1) ≤ 𝑠)) |
98 | 82, 84, 96, 97 | syl3anbrc 1342 |
. . . . . . . . . . . 12
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑛 − 1) ∈ (0...𝑠)) |
99 | 75, 98 | ffvelrnd 6962 |
. . . . . . . . . . 11
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑏‘(𝑛 − 1)) ∈ 𝐵) |
100 | | df-3an 1088 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑛 − 1)) ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑏‘(𝑛 − 1)) ∈ 𝐵)) |
101 | 74, 99, 100 | sylanbrc 583 |
. . . . . . . . . 10
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑛 − 1)) ∈ 𝐵)) |
102 | 1, 15, 16, 17 | m2cpm 21890 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑛 − 1)) ∈ 𝐵) → (𝑇‘(𝑏‘(𝑛 − 1))) ∈ 𝑆) |
103 | 101, 102 | syl 17 |
. . . . . . . . 9
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑇‘(𝑏‘(𝑛 − 1))) ∈ 𝑆) |
104 | 14 | ad2antrr 723 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑆 ∈ (SubRing‘𝑌)) |
105 | 19 | ad2antrr 723 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑇‘𝑀) ∈ 𝑆) |
106 | 20, 83 | anim12i 613 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑠 ∈
ℕ0)) |
107 | | df-3an 1088 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0)
↔ ((𝑁 ∈ Fin ∧
𝑅 ∈ Ring) ∧ 𝑠 ∈
ℕ0)) |
108 | 106, 107 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈
ℕ0)) |
109 | 108 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈
ℕ0)) |
110 | 109 | simp1d 1141 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑁 ∈ Fin) |
111 | 109 | simp2d 1142 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑅 ∈ Ring) |
112 | 44 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑏:(0...𝑠)⟶𝐵) |
113 | | simplr 766 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
∧ 𝑛 < (𝑠 + 1)) → 𝑛 ∈ ℕ0) |
114 | 23 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
∧ 𝑛 < (𝑠 + 1)) → 𝑠 ∈ ℕ0) |
115 | | nn0z 12343 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
116 | | nnz 12342 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ∈ ℕ → 𝑠 ∈
ℤ) |
117 | | zleltp1 12371 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑛 ≤ 𝑠 ↔ 𝑛 < (𝑠 + 1))) |
118 | 115, 116,
117 | syl2anr 597 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
→ (𝑛 ≤ 𝑠 ↔ 𝑛 < (𝑠 + 1))) |
119 | 118 | biimpar 478 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
∧ 𝑛 < (𝑠 + 1)) → 𝑛 ≤ 𝑠) |
120 | | elfz2nn0 13347 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ (0...𝑠) ↔ (𝑛 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0
∧ 𝑛 ≤ 𝑠)) |
121 | 113, 114,
119, 120 | syl3anbrc 1342 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0)
∧ 𝑛 < (𝑠 + 1)) → 𝑛 ∈ (0...𝑠)) |
122 | 121 | exp31 420 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈ ℕ → (𝑛 ∈ ℕ0
→ (𝑛 < (𝑠 + 1) → 𝑛 ∈ (0...𝑠)))) |
123 | 122 | ad2antrl 725 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑛 ∈ ℕ0 → (𝑛 < (𝑠 + 1) → 𝑛 ∈ (0...𝑠)))) |
124 | 123 | imp31 418 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛 ∈ (0...𝑠)) |
125 | 112, 124 | ffvelrnd 6962 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑏‘𝑛) ∈ 𝐵) |
126 | 1, 15, 16, 17 | m2cpm 21890 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘𝑛) ∈ 𝐵) → (𝑇‘(𝑏‘𝑛)) ∈ 𝑆) |
127 | 110, 111,
125, 126 | syl3anc 1370 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑇‘(𝑏‘𝑛)) ∈ 𝑆) |
128 | 35 | subrgmcl 20036 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈ (SubRing‘𝑌) ∧ (𝑇‘𝑀) ∈ 𝑆 ∧ (𝑇‘(𝑏‘𝑛)) ∈ 𝑆) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛))) ∈ 𝑆) |
129 | 104, 105,
127, 128 | syl3anc 1370 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛))) ∈ 𝑆) |
130 | 129 | adantlr 712 |
. . . . . . . . 9
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛))) ∈ 𝑆) |
131 | 38 | subgsubcl 18766 |
. . . . . . . . 9
⊢ ((𝑆 ∈ (SubGrp‘𝑌) ∧ (𝑇‘(𝑏‘(𝑛 − 1))) ∈ 𝑆 ∧ ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛))) ∈ 𝑆) → ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))) ∈ 𝑆) |
132 | 73, 103, 130, 131 | syl3anc 1370 |
. . . . . . . 8
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))) ∈ 𝑆) |
133 | 132 | ex 413 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → (𝑛 < (𝑠 + 1) → ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))) ∈ 𝑆)) |
134 | 72, 133 | syld 47 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))) ∈ 𝑆)) |
135 | 134 | impl 456 |
. . . . 5
⊢
(((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))) ∈ 𝑆) |
136 | 53, 135 | ifclda 4494 |
. . . 4
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) → if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛))))) ∈ 𝑆) |
137 | 52, 136 | ifclda 4494 |
. . 3
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬
𝑛 = 0) → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))) ∈ 𝑆) |
138 | 41, 137 | ifclda 4494 |
. 2
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛))))))) ∈ 𝑆) |
139 | | chfacfisf.g |
. 2
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 − ((𝑇‘𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏‘𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) − ((𝑇‘𝑀) × (𝑇‘(𝑏‘𝑛)))))))) |
140 | 138, 139 | fmptd 6988 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝐺:ℕ0⟶𝑆) |