Step | Hyp | Ref
| Expression |
1 | | sseq2 3943 |
. . . . . 6
⊢ (𝑦 = 𝑎 → (𝐶 ⊆ 𝑦 ↔ 𝐶 ⊆ 𝑎)) |
2 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑦 = 𝑎 → (𝐺‘𝑦) = (𝐺‘𝑎)) |
3 | 2 | sseq2d 3949 |
. . . . . 6
⊢ (𝑦 = 𝑎 → ((𝐺‘𝐶) ⊆ (𝐺‘𝑦) ↔ (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) |
4 | 1, 3 | imbi12d 344 |
. . . . 5
⊢ (𝑦 = 𝑎 → ((𝐶 ⊆ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦)) ↔ (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)))) |
5 | 4 | imbi2d 340 |
. . . 4
⊢ (𝑦 = 𝑎 → (((𝜑 ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦))) ↔ ((𝜑 ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))))) |
6 | | sseq2 3943 |
. . . . . 6
⊢ (𝑦 = 𝐷 → (𝐶 ⊆ 𝑦 ↔ 𝐶 ⊆ 𝐷)) |
7 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑦 = 𝐷 → (𝐺‘𝑦) = (𝐺‘𝐷)) |
8 | 7 | sseq2d 3949 |
. . . . . 6
⊢ (𝑦 = 𝐷 → ((𝐺‘𝐶) ⊆ (𝐺‘𝑦) ↔ (𝐺‘𝐶) ⊆ (𝐺‘𝐷))) |
9 | 6, 8 | imbi12d 344 |
. . . . 5
⊢ (𝑦 = 𝐷 → ((𝐶 ⊆ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦)) ↔ (𝐶 ⊆ 𝐷 → (𝐺‘𝐶) ⊆ (𝐺‘𝐷)))) |
10 | 9 | imbi2d 340 |
. . . 4
⊢ (𝑦 = 𝐷 → (((𝜑 ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦))) ↔ ((𝜑 ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝐷 → (𝐺‘𝐶) ⊆ (𝐺‘𝐷))))) |
11 | | r19.21v 3100 |
. . . . 5
⊢
(∀𝑎 ∈
𝑦 ((𝜑 ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) ↔ ((𝜑 ∧ 𝐶 ∈ On) → ∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)))) |
12 | | onsseleq 6292 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶 ⊆ 𝑦 ↔ (𝐶 ∈ 𝑦 ∨ 𝐶 = 𝑦))) |
13 | 12 | ad4ant23 749 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) → (𝐶 ⊆ 𝑦 ↔ (𝐶 ∈ 𝑦 ∨ 𝐶 = 𝑦))) |
14 | | sseq2 3943 |
. . . . . . . . . . . . 13
⊢ (if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦)) = if(𝑦 = ∪ 𝑦, if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦)), ((𝐺‘∪ 𝑦) ∪ if(((𝐺‘∪ 𝑦) ∪ {(𝐹‘∪ 𝑦)}) ∈ 𝐴, {(𝐹‘∪ 𝑦)}, ∅))) → ((𝐺‘𝐶) ⊆ if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦)) ↔ (𝐺‘𝐶) ⊆ if(𝑦 = ∪ 𝑦, if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦)), ((𝐺‘∪ 𝑦) ∪ if(((𝐺‘∪ 𝑦) ∪ {(𝐹‘∪ 𝑦)}) ∈ 𝐴, {(𝐹‘∪ 𝑦)},
∅))))) |
15 | | sseq2 3943 |
. . . . . . . . . . . . 13
⊢ (((𝐺‘∪ 𝑦)
∪ if(((𝐺‘∪ 𝑦)
∪ {(𝐹‘∪ 𝑦)})
∈ 𝐴, {(𝐹‘∪ 𝑦)},
∅)) = if(𝑦 = ∪ 𝑦,
if(𝑦 = ∅, 𝐵, ∪
(𝐺 “ 𝑦)), ((𝐺‘∪ 𝑦) ∪ if(((𝐺‘∪ 𝑦) ∪ {(𝐹‘∪ 𝑦)}) ∈ 𝐴, {(𝐹‘∪ 𝑦)}, ∅))) → ((𝐺‘𝐶) ⊆ ((𝐺‘∪ 𝑦) ∪ if(((𝐺‘∪ 𝑦) ∪ {(𝐹‘∪ 𝑦)}) ∈ 𝐴, {(𝐹‘∪ 𝑦)}, ∅)) ↔ (𝐺‘𝐶) ⊆ if(𝑦 = ∪ 𝑦, if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦)), ((𝐺‘∪ 𝑦) ∪ if(((𝐺‘∪ 𝑦) ∪ {(𝐹‘∪ 𝑦)}) ∈ 𝐴, {(𝐹‘∪ 𝑦)},
∅))))) |
16 | | ttukeylem.4 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom
𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom
𝑧)},
∅))))) |
17 | 16 | tfr1 8199 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐺 Fn On |
18 | | simplr 765 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → 𝑦 ∈ On) |
19 | | onss 7611 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ On → 𝑦 ⊆ On) |
20 | 18, 19 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → 𝑦 ⊆ On) |
21 | | simprr 769 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → 𝐶 ∈ 𝑦) |
22 | | fnfvima 7091 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺 Fn On ∧ 𝑦 ⊆ On ∧ 𝐶 ∈ 𝑦) → (𝐺‘𝐶) ∈ (𝐺 “ 𝑦)) |
23 | 17, 20, 21, 22 | mp3an2i 1464 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → (𝐺‘𝐶) ∈ (𝐺 “ 𝑦)) |
24 | | elssuni 4868 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘𝐶) ∈ (𝐺 “ 𝑦) → (𝐺‘𝐶) ⊆ ∪
(𝐺 “ 𝑦)) |
25 | 23, 24 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → (𝐺‘𝐶) ⊆ ∪
(𝐺 “ 𝑦)) |
26 | | n0i 4264 |
. . . . . . . . . . . . . . . 16
⊢ (𝐶 ∈ 𝑦 → ¬ 𝑦 = ∅) |
27 | | iffalse 4465 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑦 = ∅ → if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦)) = ∪ (𝐺 “ 𝑦)) |
28 | 21, 26, 27 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦)) = ∪ (𝐺 “ 𝑦)) |
29 | 25, 28 | sseqtrrd 3958 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → (𝐺‘𝐶) ⊆ if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦))) |
30 | 29 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) ∧ 𝑦 = ∪ 𝑦) → (𝐺‘𝐶) ⊆ if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦))) |
31 | 21 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) ∧ ¬ 𝑦 = ∪ 𝑦) → 𝐶 ∈ 𝑦) |
32 | | elssuni 4868 |
. . . . . . . . . . . . . . . 16
⊢ (𝐶 ∈ 𝑦 → 𝐶 ⊆ ∪ 𝑦) |
33 | 31, 32 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) ∧ ¬ 𝑦 = ∪ 𝑦) → 𝐶 ⊆ ∪ 𝑦) |
34 | | sseq2 3943 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = ∪
𝑦 → (𝐶 ⊆ 𝑎 ↔ 𝐶 ⊆ ∪ 𝑦)) |
35 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = ∪
𝑦 → (𝐺‘𝑎) = (𝐺‘∪ 𝑦)) |
36 | 35 | sseq2d 3949 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = ∪
𝑦 → ((𝐺‘𝐶) ⊆ (𝐺‘𝑎) ↔ (𝐺‘𝐶) ⊆ (𝐺‘∪ 𝑦))) |
37 | 34, 36 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = ∪
𝑦 → ((𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ↔ (𝐶 ⊆ ∪ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘∪ 𝑦)))) |
38 | | simplrl 773 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) ∧ ¬ 𝑦 = ∪ 𝑦) → ∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) |
39 | | vuniex 7570 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ 𝑦
∈ V |
40 | 39 | sucid 6330 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑦
∈ suc ∪ 𝑦 |
41 | | eloni 6261 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ On → Ord 𝑦) |
42 | | orduniorsuc 7652 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Ord
𝑦 → (𝑦 = ∪
𝑦 ∨ 𝑦 = suc ∪ 𝑦)) |
43 | 18, 41, 42 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → (𝑦 = ∪ 𝑦 ∨ 𝑦 = suc ∪ 𝑦)) |
44 | 43 | orcanai 999 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) ∧ ¬ 𝑦 = ∪ 𝑦) → 𝑦 = suc ∪ 𝑦) |
45 | 40, 44 | eleqtrrid 2846 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) ∧ ¬ 𝑦 = ∪ 𝑦) → ∪ 𝑦
∈ 𝑦) |
46 | 37, 38, 45 | rspcdva 3554 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) ∧ ¬ 𝑦 = ∪ 𝑦) → (𝐶 ⊆ ∪ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘∪ 𝑦))) |
47 | 33, 46 | mpd 15 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) ∧ ¬ 𝑦 = ∪ 𝑦) → (𝐺‘𝐶) ⊆ (𝐺‘∪ 𝑦)) |
48 | | ssun1 4102 |
. . . . . . . . . . . . . 14
⊢ (𝐺‘∪ 𝑦)
⊆ ((𝐺‘∪ 𝑦)
∪ if(((𝐺‘∪ 𝑦)
∪ {(𝐹‘∪ 𝑦)})
∈ 𝐴, {(𝐹‘∪ 𝑦)},
∅)) |
49 | 47, 48 | sstrdi 3929 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) ∧ ¬ 𝑦 = ∪ 𝑦) → (𝐺‘𝐶) ⊆ ((𝐺‘∪ 𝑦) ∪ if(((𝐺‘∪ 𝑦) ∪ {(𝐹‘∪ 𝑦)}) ∈ 𝐴, {(𝐹‘∪ 𝑦)}, ∅))) |
50 | 14, 15, 30, 49 | ifbothda 4494 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → (𝐺‘𝐶) ⊆ if(𝑦 = ∪ 𝑦, if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦)), ((𝐺‘∪ 𝑦) ∪ if(((𝐺‘∪ 𝑦) ∪ {(𝐹‘∪ 𝑦)}) ∈ 𝐴, {(𝐹‘∪ 𝑦)}, ∅)))) |
51 | | ttukeylem.1 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹:(card‘(∪
𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) |
52 | | ttukeylem.2 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ 𝐴) |
53 | | ttukeylem.3 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) |
54 | 51, 52, 53, 16 | ttukeylem3 10198 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ On) → (𝐺‘𝑦) = if(𝑦 = ∪ 𝑦, if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦)), ((𝐺‘∪ 𝑦) ∪ if(((𝐺‘∪ 𝑦) ∪ {(𝐹‘∪ 𝑦)}) ∈ 𝐴, {(𝐹‘∪ 𝑦)}, ∅)))) |
55 | 54 | ad4ant13 747 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → (𝐺‘𝑦) = if(𝑦 = ∪ 𝑦, if(𝑦 = ∅, 𝐵, ∪ (𝐺 “ 𝑦)), ((𝐺‘∪ 𝑦) ∪ if(((𝐺‘∪ 𝑦) ∪ {(𝐹‘∪ 𝑦)}) ∈ 𝐴, {(𝐹‘∪ 𝑦)}, ∅)))) |
56 | 50, 55 | sseqtrrd 3958 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) ∧ 𝐶 ∈ 𝑦)) → (𝐺‘𝐶) ⊆ (𝐺‘𝑦)) |
57 | 56 | expr 456 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) → (𝐶 ∈ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦))) |
58 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝐶 = 𝑦 → (𝐺‘𝐶) = (𝐺‘𝑦)) |
59 | | eqimss 3973 |
. . . . . . . . . . . 12
⊢ ((𝐺‘𝐶) = (𝐺‘𝑦) → (𝐺‘𝐶) ⊆ (𝐺‘𝑦)) |
60 | 58, 59 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐶 = 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦)) |
61 | 60 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) → (𝐶 = 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦))) |
62 | 57, 61 | jaod 855 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) → ((𝐶 ∈ 𝑦 ∨ 𝐶 = 𝑦) → (𝐺‘𝐶) ⊆ (𝐺‘𝑦))) |
63 | 13, 62 | sylbid 239 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) → (𝐶 ⊆ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦))) |
64 | 63 | ex 412 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐶 ∈ On) ∧ 𝑦 ∈ On) → (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) → (𝐶 ⊆ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦)))) |
65 | 64 | expcom 413 |
. . . . . 6
⊢ (𝑦 ∈ On → ((𝜑 ∧ 𝐶 ∈ On) → (∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎)) → (𝐶 ⊆ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦))))) |
66 | 65 | a2d 29 |
. . . . 5
⊢ (𝑦 ∈ On → (((𝜑 ∧ 𝐶 ∈ On) → ∀𝑎 ∈ 𝑦 (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) → ((𝜑 ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦))))) |
67 | 11, 66 | syl5bi 241 |
. . . 4
⊢ (𝑦 ∈ On → (∀𝑎 ∈ 𝑦 ((𝜑 ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝑎 → (𝐺‘𝐶) ⊆ (𝐺‘𝑎))) → ((𝜑 ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝑦 → (𝐺‘𝐶) ⊆ (𝐺‘𝑦))))) |
68 | 5, 10, 67 | tfis3 7679 |
. . 3
⊢ (𝐷 ∈ On → ((𝜑 ∧ 𝐶 ∈ On) → (𝐶 ⊆ 𝐷 → (𝐺‘𝐶) ⊆ (𝐺‘𝐷)))) |
69 | 68 | expdcom 414 |
. 2
⊢ (𝜑 → (𝐶 ∈ On → (𝐷 ∈ On → (𝐶 ⊆ 𝐷 → (𝐺‘𝐶) ⊆ (𝐺‘𝐷))))) |
70 | 69 | 3imp2 1347 |
1
⊢ ((𝜑 ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On ∧ 𝐶 ⊆ 𝐷)) → (𝐺‘𝐶) ⊆ (𝐺‘𝐷)) |