MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem5 Structured version   Visualization version   GIF version

Theorem ttukeylem5 10551
Description: Lemma for ttukey 10556. The 𝐺 function forms a (transfinitely long) chain of inclusions. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
ttukeylem.4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
Assertion
Ref Expression
ttukeylem5 ((𝜑 ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On ∧ 𝐶𝐷)) → (𝐺𝐶) ⊆ (𝐺𝐷))
Distinct variable groups:   𝑥,𝑧,𝐶   𝑥,𝐷   𝑥,𝐺,𝑧   𝜑,𝑧   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧   𝑥,𝐹,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑧)

Proof of Theorem ttukeylem5
Dummy variables 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq2 4022 . . . . . 6 (𝑦 = 𝑎 → (𝐶𝑦𝐶𝑎))
2 fveq2 6907 . . . . . . 7 (𝑦 = 𝑎 → (𝐺𝑦) = (𝐺𝑎))
32sseq2d 4028 . . . . . 6 (𝑦 = 𝑎 → ((𝐺𝐶) ⊆ (𝐺𝑦) ↔ (𝐺𝐶) ⊆ (𝐺𝑎)))
41, 3imbi12d 344 . . . . 5 (𝑦 = 𝑎 → ((𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)) ↔ (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))))
54imbi2d 340 . . . 4 (𝑦 = 𝑎 → (((𝜑𝐶 ∈ On) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦))) ↔ ((𝜑𝐶 ∈ On) → (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)))))
6 sseq2 4022 . . . . . 6 (𝑦 = 𝐷 → (𝐶𝑦𝐶𝐷))
7 fveq2 6907 . . . . . . 7 (𝑦 = 𝐷 → (𝐺𝑦) = (𝐺𝐷))
87sseq2d 4028 . . . . . 6 (𝑦 = 𝐷 → ((𝐺𝐶) ⊆ (𝐺𝑦) ↔ (𝐺𝐶) ⊆ (𝐺𝐷)))
96, 8imbi12d 344 . . . . 5 (𝑦 = 𝐷 → ((𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)) ↔ (𝐶𝐷 → (𝐺𝐶) ⊆ (𝐺𝐷))))
109imbi2d 340 . . . 4 (𝑦 = 𝐷 → (((𝜑𝐶 ∈ On) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦))) ↔ ((𝜑𝐶 ∈ On) → (𝐶𝐷 → (𝐺𝐶) ⊆ (𝐺𝐷)))))
11 r19.21v 3178 . . . . 5 (∀𝑎𝑦 ((𝜑𝐶 ∈ On) → (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) ↔ ((𝜑𝐶 ∈ On) → ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))))
12 onsseleq 6427 . . . . . . . . . 10 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶𝑦 ↔ (𝐶𝑦𝐶 = 𝑦)))
1312ad4ant23 753 . . . . . . . . 9 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → (𝐶𝑦 ↔ (𝐶𝑦𝐶 = 𝑦)))
14 sseq2 4022 . . . . . . . . . . . . 13 (if(𝑦 = ∅, 𝐵, (𝐺𝑦)) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))) → ((𝐺𝐶) ⊆ if(𝑦 = ∅, 𝐵, (𝐺𝑦)) ↔ (𝐺𝐶) ⊆ if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))))
15 sseq2 4022 . . . . . . . . . . . . 13 (((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))) → ((𝐺𝐶) ⊆ ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)) ↔ (𝐺𝐶) ⊆ if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))))
16 ttukeylem.4 . . . . . . . . . . . . . . . . . 18 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
1716tfr1 8436 . . . . . . . . . . . . . . . . 17 𝐺 Fn On
18 simplr 769 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → 𝑦 ∈ On)
19 onss 7804 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ On → 𝑦 ⊆ On)
2018, 19syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → 𝑦 ⊆ On)
21 simprr 773 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → 𝐶𝑦)
22 fnfvima 7253 . . . . . . . . . . . . . . . . 17 ((𝐺 Fn On ∧ 𝑦 ⊆ On ∧ 𝐶𝑦) → (𝐺𝐶) ∈ (𝐺𝑦))
2317, 20, 21, 22mp3an2i 1465 . . . . . . . . . . . . . . . 16 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝐶) ∈ (𝐺𝑦))
24 elssuni 4942 . . . . . . . . . . . . . . . 16 ((𝐺𝐶) ∈ (𝐺𝑦) → (𝐺𝐶) ⊆ (𝐺𝑦))
2523, 24syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝐶) ⊆ (𝐺𝑦))
26 n0i 4346 . . . . . . . . . . . . . . . 16 (𝐶𝑦 → ¬ 𝑦 = ∅)
27 iffalse 4540 . . . . . . . . . . . . . . . 16 𝑦 = ∅ → if(𝑦 = ∅, 𝐵, (𝐺𝑦)) = (𝐺𝑦))
2821, 26, 273syl 18 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → if(𝑦 = ∅, 𝐵, (𝐺𝑦)) = (𝐺𝑦))
2925, 28sseqtrrd 4037 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝐶) ⊆ if(𝑦 = ∅, 𝐵, (𝐺𝑦)))
3029adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ 𝑦 = 𝑦) → (𝐺𝐶) ⊆ if(𝑦 = ∅, 𝐵, (𝐺𝑦)))
3121adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → 𝐶𝑦)
32 elssuni 4942 . . . . . . . . . . . . . . . 16 (𝐶𝑦𝐶 𝑦)
3331, 32syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → 𝐶 𝑦)
34 sseq2 4022 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → (𝐶𝑎𝐶 𝑦))
35 fveq2 6907 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑦 → (𝐺𝑎) = (𝐺 𝑦))
3635sseq2d 4028 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → ((𝐺𝐶) ⊆ (𝐺𝑎) ↔ (𝐺𝐶) ⊆ (𝐺 𝑦)))
3734, 36imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → ((𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ↔ (𝐶 𝑦 → (𝐺𝐶) ⊆ (𝐺 𝑦))))
38 simplrl 777 . . . . . . . . . . . . . . . 16 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)))
39 vuniex 7758 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
4039sucid 6468 . . . . . . . . . . . . . . . . 17 𝑦 ∈ suc 𝑦
41 eloni 6396 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ On → Ord 𝑦)
42 orduniorsuc 7850 . . . . . . . . . . . . . . . . . . 19 (Ord 𝑦 → (𝑦 = 𝑦𝑦 = suc 𝑦))
4318, 41, 423syl 18 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝑦 = 𝑦𝑦 = suc 𝑦))
4443orcanai 1004 . . . . . . . . . . . . . . . . 17 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → 𝑦 = suc 𝑦)
4540, 44eleqtrrid 2846 . . . . . . . . . . . . . . . 16 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → 𝑦𝑦)
4637, 38, 45rspcdva 3623 . . . . . . . . . . . . . . 15 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → (𝐶 𝑦 → (𝐺𝐶) ⊆ (𝐺 𝑦)))
4733, 46mpd 15 . . . . . . . . . . . . . 14 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → (𝐺𝐶) ⊆ (𝐺 𝑦))
48 ssun1 4188 . . . . . . . . . . . . . 14 (𝐺 𝑦) ⊆ ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))
4947, 48sstrdi 4008 . . . . . . . . . . . . 13 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → (𝐺𝐶) ⊆ ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))
5014, 15, 30, 49ifbothda 4569 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝐶) ⊆ if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))))
51 ttukeylem.1 . . . . . . . . . . . . . 14 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
52 ttukeylem.2 . . . . . . . . . . . . . 14 (𝜑𝐵𝐴)
53 ttukeylem.3 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
5451, 52, 53, 16ttukeylem3 10549 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ On) → (𝐺𝑦) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))))
5554ad4ant13 751 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝑦) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))))
5650, 55sseqtrrd 4037 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝐶) ⊆ (𝐺𝑦))
5756expr 456 . . . . . . . . . 10 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))
58 fveq2 6907 . . . . . . . . . . . 12 (𝐶 = 𝑦 → (𝐺𝐶) = (𝐺𝑦))
59 eqimss 4054 . . . . . . . . . . . 12 ((𝐺𝐶) = (𝐺𝑦) → (𝐺𝐶) ⊆ (𝐺𝑦))
6058, 59syl 17 . . . . . . . . . . 11 (𝐶 = 𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦))
6160a1i 11 . . . . . . . . . 10 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → (𝐶 = 𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))
6257, 61jaod 859 . . . . . . . . 9 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → ((𝐶𝑦𝐶 = 𝑦) → (𝐺𝐶) ⊆ (𝐺𝑦)))
6313, 62sylbid 240 . . . . . . . 8 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))
6463ex 412 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) → (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦))))
6564expcom 413 . . . . . 6 (𝑦 ∈ On → ((𝜑𝐶 ∈ On) → (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))))
6665a2d 29 . . . . 5 (𝑦 ∈ On → (((𝜑𝐶 ∈ On) → ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → ((𝜑𝐶 ∈ On) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))))
6711, 66biimtrid 242 . . . 4 (𝑦 ∈ On → (∀𝑎𝑦 ((𝜑𝐶 ∈ On) → (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → ((𝜑𝐶 ∈ On) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))))
685, 10, 67tfis3 7879 . . 3 (𝐷 ∈ On → ((𝜑𝐶 ∈ On) → (𝐶𝐷 → (𝐺𝐶) ⊆ (𝐺𝐷))))
6968expdcom 414 . 2 (𝜑 → (𝐶 ∈ On → (𝐷 ∈ On → (𝐶𝐷 → (𝐺𝐶) ⊆ (𝐺𝐷)))))
70693imp2 1348 1 ((𝜑 ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On ∧ 𝐶𝐷)) → (𝐺𝐶) ⊆ (𝐺𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wal 1535   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  cdif 3960  cun 3961  cin 3962  wss 3963  c0 4339  ifcif 4531  𝒫 cpw 4605  {csn 4631   cuni 4912  cmpt 5231  dom cdm 5689  ran crn 5690  cima 5692  Ord word 6385  Oncon0 6386  suc csuc 6388   Fn wfn 6558  1-1-ontowf1o 6562  cfv 6563  recscrecs 8409  Fincfn 8984  cardccrd 9973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410
This theorem is referenced by:  ttukeylem6  10552  ttukeylem7  10553
  Copyright terms: Public domain W3C validator