MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem5 Structured version   Visualization version   GIF version

Theorem ttukeylem5 10582
Description: Lemma for ttukey 10587. The 𝐺 function forms a (transfinitely long) chain of inclusions. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
ttukeylem.4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
Assertion
Ref Expression
ttukeylem5 ((𝜑 ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On ∧ 𝐶𝐷)) → (𝐺𝐶) ⊆ (𝐺𝐷))
Distinct variable groups:   𝑥,𝑧,𝐶   𝑥,𝐷   𝑥,𝐺,𝑧   𝜑,𝑧   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧   𝑥,𝐹,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑧)

Proof of Theorem ttukeylem5
Dummy variables 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq2 4035 . . . . . 6 (𝑦 = 𝑎 → (𝐶𝑦𝐶𝑎))
2 fveq2 6920 . . . . . . 7 (𝑦 = 𝑎 → (𝐺𝑦) = (𝐺𝑎))
32sseq2d 4041 . . . . . 6 (𝑦 = 𝑎 → ((𝐺𝐶) ⊆ (𝐺𝑦) ↔ (𝐺𝐶) ⊆ (𝐺𝑎)))
41, 3imbi12d 344 . . . . 5 (𝑦 = 𝑎 → ((𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)) ↔ (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))))
54imbi2d 340 . . . 4 (𝑦 = 𝑎 → (((𝜑𝐶 ∈ On) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦))) ↔ ((𝜑𝐶 ∈ On) → (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)))))
6 sseq2 4035 . . . . . 6 (𝑦 = 𝐷 → (𝐶𝑦𝐶𝐷))
7 fveq2 6920 . . . . . . 7 (𝑦 = 𝐷 → (𝐺𝑦) = (𝐺𝐷))
87sseq2d 4041 . . . . . 6 (𝑦 = 𝐷 → ((𝐺𝐶) ⊆ (𝐺𝑦) ↔ (𝐺𝐶) ⊆ (𝐺𝐷)))
96, 8imbi12d 344 . . . . 5 (𝑦 = 𝐷 → ((𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)) ↔ (𝐶𝐷 → (𝐺𝐶) ⊆ (𝐺𝐷))))
109imbi2d 340 . . . 4 (𝑦 = 𝐷 → (((𝜑𝐶 ∈ On) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦))) ↔ ((𝜑𝐶 ∈ On) → (𝐶𝐷 → (𝐺𝐶) ⊆ (𝐺𝐷)))))
11 r19.21v 3186 . . . . 5 (∀𝑎𝑦 ((𝜑𝐶 ∈ On) → (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) ↔ ((𝜑𝐶 ∈ On) → ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))))
12 onsseleq 6436 . . . . . . . . . 10 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶𝑦 ↔ (𝐶𝑦𝐶 = 𝑦)))
1312ad4ant23 752 . . . . . . . . 9 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → (𝐶𝑦 ↔ (𝐶𝑦𝐶 = 𝑦)))
14 sseq2 4035 . . . . . . . . . . . . 13 (if(𝑦 = ∅, 𝐵, (𝐺𝑦)) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))) → ((𝐺𝐶) ⊆ if(𝑦 = ∅, 𝐵, (𝐺𝑦)) ↔ (𝐺𝐶) ⊆ if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))))
15 sseq2 4035 . . . . . . . . . . . . 13 (((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))) → ((𝐺𝐶) ⊆ ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)) ↔ (𝐺𝐶) ⊆ if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))))
16 ttukeylem.4 . . . . . . . . . . . . . . . . . 18 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
1716tfr1 8453 . . . . . . . . . . . . . . . . 17 𝐺 Fn On
18 simplr 768 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → 𝑦 ∈ On)
19 onss 7820 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ On → 𝑦 ⊆ On)
2018, 19syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → 𝑦 ⊆ On)
21 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → 𝐶𝑦)
22 fnfvima 7270 . . . . . . . . . . . . . . . . 17 ((𝐺 Fn On ∧ 𝑦 ⊆ On ∧ 𝐶𝑦) → (𝐺𝐶) ∈ (𝐺𝑦))
2317, 20, 21, 22mp3an2i 1466 . . . . . . . . . . . . . . . 16 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝐶) ∈ (𝐺𝑦))
24 elssuni 4961 . . . . . . . . . . . . . . . 16 ((𝐺𝐶) ∈ (𝐺𝑦) → (𝐺𝐶) ⊆ (𝐺𝑦))
2523, 24syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝐶) ⊆ (𝐺𝑦))
26 n0i 4363 . . . . . . . . . . . . . . . 16 (𝐶𝑦 → ¬ 𝑦 = ∅)
27 iffalse 4557 . . . . . . . . . . . . . . . 16 𝑦 = ∅ → if(𝑦 = ∅, 𝐵, (𝐺𝑦)) = (𝐺𝑦))
2821, 26, 273syl 18 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → if(𝑦 = ∅, 𝐵, (𝐺𝑦)) = (𝐺𝑦))
2925, 28sseqtrrd 4050 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝐶) ⊆ if(𝑦 = ∅, 𝐵, (𝐺𝑦)))
3029adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ 𝑦 = 𝑦) → (𝐺𝐶) ⊆ if(𝑦 = ∅, 𝐵, (𝐺𝑦)))
3121adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → 𝐶𝑦)
32 elssuni 4961 . . . . . . . . . . . . . . . 16 (𝐶𝑦𝐶 𝑦)
3331, 32syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → 𝐶 𝑦)
34 sseq2 4035 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → (𝐶𝑎𝐶 𝑦))
35 fveq2 6920 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑦 → (𝐺𝑎) = (𝐺 𝑦))
3635sseq2d 4041 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → ((𝐺𝐶) ⊆ (𝐺𝑎) ↔ (𝐺𝐶) ⊆ (𝐺 𝑦)))
3734, 36imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → ((𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ↔ (𝐶 𝑦 → (𝐺𝐶) ⊆ (𝐺 𝑦))))
38 simplrl 776 . . . . . . . . . . . . . . . 16 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)))
39 vuniex 7774 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
4039sucid 6477 . . . . . . . . . . . . . . . . 17 𝑦 ∈ suc 𝑦
41 eloni 6405 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ On → Ord 𝑦)
42 orduniorsuc 7866 . . . . . . . . . . . . . . . . . . 19 (Ord 𝑦 → (𝑦 = 𝑦𝑦 = suc 𝑦))
4318, 41, 423syl 18 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝑦 = 𝑦𝑦 = suc 𝑦))
4443orcanai 1003 . . . . . . . . . . . . . . . . 17 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → 𝑦 = suc 𝑦)
4540, 44eleqtrrid 2851 . . . . . . . . . . . . . . . 16 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → 𝑦𝑦)
4637, 38, 45rspcdva 3636 . . . . . . . . . . . . . . 15 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → (𝐶 𝑦 → (𝐺𝐶) ⊆ (𝐺 𝑦)))
4733, 46mpd 15 . . . . . . . . . . . . . 14 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → (𝐺𝐶) ⊆ (𝐺 𝑦))
48 ssun1 4201 . . . . . . . . . . . . . 14 (𝐺 𝑦) ⊆ ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))
4947, 48sstrdi 4021 . . . . . . . . . . . . 13 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → (𝐺𝐶) ⊆ ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))
5014, 15, 30, 49ifbothda 4586 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝐶) ⊆ if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))))
51 ttukeylem.1 . . . . . . . . . . . . . 14 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
52 ttukeylem.2 . . . . . . . . . . . . . 14 (𝜑𝐵𝐴)
53 ttukeylem.3 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
5451, 52, 53, 16ttukeylem3 10580 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ On) → (𝐺𝑦) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))))
5554ad4ant13 750 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝑦) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))))
5650, 55sseqtrrd 4050 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝐶) ⊆ (𝐺𝑦))
5756expr 456 . . . . . . . . . 10 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))
58 fveq2 6920 . . . . . . . . . . . 12 (𝐶 = 𝑦 → (𝐺𝐶) = (𝐺𝑦))
59 eqimss 4067 . . . . . . . . . . . 12 ((𝐺𝐶) = (𝐺𝑦) → (𝐺𝐶) ⊆ (𝐺𝑦))
6058, 59syl 17 . . . . . . . . . . 11 (𝐶 = 𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦))
6160a1i 11 . . . . . . . . . 10 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → (𝐶 = 𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))
6257, 61jaod 858 . . . . . . . . 9 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → ((𝐶𝑦𝐶 = 𝑦) → (𝐺𝐶) ⊆ (𝐺𝑦)))
6313, 62sylbid 240 . . . . . . . 8 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))
6463ex 412 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) → (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦))))
6564expcom 413 . . . . . 6 (𝑦 ∈ On → ((𝜑𝐶 ∈ On) → (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))))
6665a2d 29 . . . . 5 (𝑦 ∈ On → (((𝜑𝐶 ∈ On) → ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → ((𝜑𝐶 ∈ On) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))))
6711, 66biimtrid 242 . . . 4 (𝑦 ∈ On → (∀𝑎𝑦 ((𝜑𝐶 ∈ On) → (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → ((𝜑𝐶 ∈ On) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))))
685, 10, 67tfis3 7895 . . 3 (𝐷 ∈ On → ((𝜑𝐶 ∈ On) → (𝐶𝐷 → (𝐺𝐶) ⊆ (𝐺𝐷))))
6968expdcom 414 . 2 (𝜑 → (𝐶 ∈ On → (𝐷 ∈ On → (𝐶𝐷 → (𝐺𝐶) ⊆ (𝐺𝐷)))))
70693imp2 1349 1 ((𝜑 ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On ∧ 𝐶𝐷)) → (𝐺𝐶) ⊆ (𝐺𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087  wal 1535   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  ifcif 4548  𝒫 cpw 4622  {csn 4648   cuni 4931  cmpt 5249  dom cdm 5700  ran crn 5701  cima 5703  Ord word 6394  Oncon0 6395  suc csuc 6397   Fn wfn 6568  1-1-ontowf1o 6572  cfv 6573  recscrecs 8426  Fincfn 9003  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427
This theorem is referenced by:  ttukeylem6  10583  ttukeylem7  10584
  Copyright terms: Public domain W3C validator