MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem5 Structured version   Visualization version   GIF version

Theorem ttukeylem5 9784
Description: Lemma for ttukey 9789. The 𝐺 function forms a (transfinitely long) chain of inclusions. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
ttukeylem.4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
Assertion
Ref Expression
ttukeylem5 ((𝜑 ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On ∧ 𝐶𝐷)) → (𝐺𝐶) ⊆ (𝐺𝐷))
Distinct variable groups:   𝑥,𝑧,𝐶   𝑥,𝐷   𝑥,𝐺,𝑧   𝜑,𝑧   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧   𝑥,𝐹,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑧)

Proof of Theorem ttukeylem5
Dummy variables 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq2 3916 . . . . . 6 (𝑦 = 𝑎 → (𝐶𝑦𝐶𝑎))
2 fveq2 6541 . . . . . . 7 (𝑦 = 𝑎 → (𝐺𝑦) = (𝐺𝑎))
32sseq2d 3922 . . . . . 6 (𝑦 = 𝑎 → ((𝐺𝐶) ⊆ (𝐺𝑦) ↔ (𝐺𝐶) ⊆ (𝐺𝑎)))
41, 3imbi12d 346 . . . . 5 (𝑦 = 𝑎 → ((𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)) ↔ (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))))
54imbi2d 342 . . . 4 (𝑦 = 𝑎 → (((𝜑𝐶 ∈ On) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦))) ↔ ((𝜑𝐶 ∈ On) → (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)))))
6 sseq2 3916 . . . . . 6 (𝑦 = 𝐷 → (𝐶𝑦𝐶𝐷))
7 fveq2 6541 . . . . . . 7 (𝑦 = 𝐷 → (𝐺𝑦) = (𝐺𝐷))
87sseq2d 3922 . . . . . 6 (𝑦 = 𝐷 → ((𝐺𝐶) ⊆ (𝐺𝑦) ↔ (𝐺𝐶) ⊆ (𝐺𝐷)))
96, 8imbi12d 346 . . . . 5 (𝑦 = 𝐷 → ((𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)) ↔ (𝐶𝐷 → (𝐺𝐶) ⊆ (𝐺𝐷))))
109imbi2d 342 . . . 4 (𝑦 = 𝐷 → (((𝜑𝐶 ∈ On) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦))) ↔ ((𝜑𝐶 ∈ On) → (𝐶𝐷 → (𝐺𝐶) ⊆ (𝐺𝐷)))))
11 r19.21v 3141 . . . . 5 (∀𝑎𝑦 ((𝜑𝐶 ∈ On) → (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) ↔ ((𝜑𝐶 ∈ On) → ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))))
12 onsseleq 6110 . . . . . . . . . 10 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶𝑦 ↔ (𝐶𝑦𝐶 = 𝑦)))
1312ad4ant23 749 . . . . . . . . 9 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → (𝐶𝑦 ↔ (𝐶𝑦𝐶 = 𝑦)))
14 sseq2 3916 . . . . . . . . . . . . 13 (if(𝑦 = ∅, 𝐵, (𝐺𝑦)) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))) → ((𝐺𝐶) ⊆ if(𝑦 = ∅, 𝐵, (𝐺𝑦)) ↔ (𝐺𝐶) ⊆ if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))))
15 sseq2 3916 . . . . . . . . . . . . 13 (((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))) → ((𝐺𝐶) ⊆ ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)) ↔ (𝐺𝐶) ⊆ if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))))
16 ttukeylem.4 . . . . . . . . . . . . . . . . . 18 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
1716tfr1 7888 . . . . . . . . . . . . . . . . 17 𝐺 Fn On
18 simplr 765 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → 𝑦 ∈ On)
19 onss 7364 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ On → 𝑦 ⊆ On)
2018, 19syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → 𝑦 ⊆ On)
21 simprr 769 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → 𝐶𝑦)
22 fnfvima 6863 . . . . . . . . . . . . . . . . 17 ((𝐺 Fn On ∧ 𝑦 ⊆ On ∧ 𝐶𝑦) → (𝐺𝐶) ∈ (𝐺𝑦))
2317, 20, 21, 22mp3an2i 1458 . . . . . . . . . . . . . . . 16 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝐶) ∈ (𝐺𝑦))
24 elssuni 4776 . . . . . . . . . . . . . . . 16 ((𝐺𝐶) ∈ (𝐺𝑦) → (𝐺𝐶) ⊆ (𝐺𝑦))
2523, 24syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝐶) ⊆ (𝐺𝑦))
26 n0i 4221 . . . . . . . . . . . . . . . 16 (𝐶𝑦 → ¬ 𝑦 = ∅)
27 iffalse 4392 . . . . . . . . . . . . . . . 16 𝑦 = ∅ → if(𝑦 = ∅, 𝐵, (𝐺𝑦)) = (𝐺𝑦))
2821, 26, 273syl 18 . . . . . . . . . . . . . . 15 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → if(𝑦 = ∅, 𝐵, (𝐺𝑦)) = (𝐺𝑦))
2925, 28sseqtr4d 3931 . . . . . . . . . . . . . 14 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝐶) ⊆ if(𝑦 = ∅, 𝐵, (𝐺𝑦)))
3029adantr 481 . . . . . . . . . . . . 13 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ 𝑦 = 𝑦) → (𝐺𝐶) ⊆ if(𝑦 = ∅, 𝐵, (𝐺𝑦)))
3121adantr 481 . . . . . . . . . . . . . . . 16 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → 𝐶𝑦)
32 elssuni 4776 . . . . . . . . . . . . . . . 16 (𝐶𝑦𝐶 𝑦)
3331, 32syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → 𝐶 𝑦)
34 sseq2 3916 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → (𝐶𝑎𝐶 𝑦))
35 fveq2 6541 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑦 → (𝐺𝑎) = (𝐺 𝑦))
3635sseq2d 3922 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → ((𝐺𝐶) ⊆ (𝐺𝑎) ↔ (𝐺𝐶) ⊆ (𝐺 𝑦)))
3734, 36imbi12d 346 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → ((𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ↔ (𝐶 𝑦 → (𝐺𝐶) ⊆ (𝐺 𝑦))))
38 simplrl 773 . . . . . . . . . . . . . . . 16 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)))
39 vuniex 7327 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
4039sucid 6148 . . . . . . . . . . . . . . . . 17 𝑦 ∈ suc 𝑦
41 eloni 6079 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ On → Ord 𝑦)
42 orduniorsuc 7404 . . . . . . . . . . . . . . . . . . 19 (Ord 𝑦 → (𝑦 = 𝑦𝑦 = suc 𝑦))
4318, 41, 423syl 18 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝑦 = 𝑦𝑦 = suc 𝑦))
4443orcanai 997 . . . . . . . . . . . . . . . . 17 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → 𝑦 = suc 𝑦)
4540, 44syl5eleqr 2889 . . . . . . . . . . . . . . . 16 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → 𝑦𝑦)
4637, 38, 45rspcdva 3563 . . . . . . . . . . . . . . 15 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → (𝐶 𝑦 → (𝐺𝐶) ⊆ (𝐺 𝑦)))
4733, 46mpd 15 . . . . . . . . . . . . . 14 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → (𝐺𝐶) ⊆ (𝐺 𝑦))
48 ssun1 4071 . . . . . . . . . . . . . 14 (𝐺 𝑦) ⊆ ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))
4947, 48syl6ss 3903 . . . . . . . . . . . . 13 (((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) ∧ ¬ 𝑦 = 𝑦) → (𝐺𝐶) ⊆ ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))
5014, 15, 30, 49ifbothda 4420 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝐶) ⊆ if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))))
51 ttukeylem.1 . . . . . . . . . . . . . 14 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
52 ttukeylem.2 . . . . . . . . . . . . . 14 (𝜑𝐵𝐴)
53 ttukeylem.3 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
5451, 52, 53, 16ttukeylem3 9782 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ On) → (𝐺𝑦) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))))
5554ad4ant13 747 . . . . . . . . . . . 12 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝑦) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))))
5650, 55sseqtr4d 3931 . . . . . . . . . . 11 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) ∧ 𝐶𝑦)) → (𝐺𝐶) ⊆ (𝐺𝑦))
5756expr 457 . . . . . . . . . 10 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))
58 fveq2 6541 . . . . . . . . . . . 12 (𝐶 = 𝑦 → (𝐺𝐶) = (𝐺𝑦))
59 eqimss 3946 . . . . . . . . . . . 12 ((𝐺𝐶) = (𝐺𝑦) → (𝐺𝐶) ⊆ (𝐺𝑦))
6058, 59syl 17 . . . . . . . . . . 11 (𝐶 = 𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦))
6160a1i 11 . . . . . . . . . 10 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → (𝐶 = 𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))
6257, 61jaod 854 . . . . . . . . 9 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → ((𝐶𝑦𝐶 = 𝑦) → (𝐺𝐶) ⊆ (𝐺𝑦)))
6313, 62sylbid 241 . . . . . . . 8 ((((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) ∧ ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))
6463ex 413 . . . . . . 7 (((𝜑𝐶 ∈ On) ∧ 𝑦 ∈ On) → (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦))))
6564expcom 414 . . . . . 6 (𝑦 ∈ On → ((𝜑𝐶 ∈ On) → (∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎)) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))))
6665a2d 29 . . . . 5 (𝑦 ∈ On → (((𝜑𝐶 ∈ On) → ∀𝑎𝑦 (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → ((𝜑𝐶 ∈ On) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))))
6711, 66syl5bi 243 . . . 4 (𝑦 ∈ On → (∀𝑎𝑦 ((𝜑𝐶 ∈ On) → (𝐶𝑎 → (𝐺𝐶) ⊆ (𝐺𝑎))) → ((𝜑𝐶 ∈ On) → (𝐶𝑦 → (𝐺𝐶) ⊆ (𝐺𝑦)))))
685, 10, 67tfis3 7431 . . 3 (𝐷 ∈ On → ((𝜑𝐶 ∈ On) → (𝐶𝐷 → (𝐺𝐶) ⊆ (𝐺𝐷))))
6968expdcom 415 . 2 (𝜑 → (𝐶 ∈ On → (𝐷 ∈ On → (𝐶𝐷 → (𝐺𝐶) ⊆ (𝐺𝐷)))))
70693imp2 1342 1 ((𝜑 ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On ∧ 𝐶𝐷)) → (𝐺𝐶) ⊆ (𝐺𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3a 1080  wal 1520   = wceq 1522  wcel 2080  wral 3104  Vcvv 3436  cdif 3858  cun 3859  cin 3860  wss 3861  c0 4213  ifcif 4383  𝒫 cpw 4455  {csn 4474   cuni 4747  cmpt 5043  dom cdm 5446  ran crn 5447  cima 5449  Ord word 6068  Oncon0 6069  suc csuc 6071   Fn wfn 6223  1-1-ontowf1o 6227  cfv 6228  recscrecs 7862  Fincfn 8360  cardccrd 9213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-ral 3109  df-rex 3110  df-reu 3111  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-sn 4475  df-pr 4477  df-tp 4479  df-op 4481  df-uni 4748  df-iun 4829  df-br 4965  df-opab 5027  df-mpt 5044  df-tr 5067  df-id 5351  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-we 5407  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-pred 6026  df-ord 6072  df-on 6073  df-suc 6075  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-wrecs 7801  df-recs 7863
This theorem is referenced by:  ttukeylem6  9785  ttukeylem7  9786
  Copyright terms: Public domain W3C validator