MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim3 Structured version   Visualization version   GIF version

Theorem rlim3 15298
Description: Restrict the range of the domain bound to reals greater than some 𝐷 ∈ ℝ. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlim2.1 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
rlim2.2 (𝜑𝐴 ⊆ ℝ)
rlim2.3 (𝜑𝐶 ∈ ℂ)
rlim3.4 (𝜑𝐷 ∈ ℝ)
Assertion
Ref Expression
rlim3 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦   𝑦,𝐷,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)   𝐷(𝑥)

Proof of Theorem rlim3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 rlim2.1 . . . 4 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
2 rlim2.2 . . . 4 (𝜑𝐴 ⊆ ℝ)
3 rlim2.3 . . . 4 (𝜑𝐶 ∈ ℂ)
41, 2, 3rlim2 15296 . . 3 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
5 simpr 485 . . . . . . . 8 ((𝜑𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
6 rlim3.4 . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
76adantr 481 . . . . . . . 8 ((𝜑𝑤 ∈ ℝ) → 𝐷 ∈ ℝ)
85, 7ifcld 4518 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → if(𝐷𝑤, 𝑤, 𝐷) ∈ ℝ)
9 max1 13012 . . . . . . . 8 ((𝐷 ∈ ℝ ∧ 𝑤 ∈ ℝ) → 𝐷 ≤ if(𝐷𝑤, 𝑤, 𝐷))
106, 9sylan 580 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → 𝐷 ≤ if(𝐷𝑤, 𝑤, 𝐷))
11 elicopnf 13270 . . . . . . . 8 (𝐷 ∈ ℝ → (if(𝐷𝑤, 𝑤, 𝐷) ∈ (𝐷[,)+∞) ↔ (if(𝐷𝑤, 𝑤, 𝐷) ∈ ℝ ∧ 𝐷 ≤ if(𝐷𝑤, 𝑤, 𝐷))))
127, 11syl 17 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → (if(𝐷𝑤, 𝑤, 𝐷) ∈ (𝐷[,)+∞) ↔ (if(𝐷𝑤, 𝑤, 𝐷) ∈ ℝ ∧ 𝐷 ≤ if(𝐷𝑤, 𝑤, 𝐷))))
138, 10, 12mpbir2and 710 . . . . . 6 ((𝜑𝑤 ∈ ℝ) → if(𝐷𝑤, 𝑤, 𝐷) ∈ (𝐷[,)+∞))
142, 6jca 512 . . . . . . 7 (𝜑 → (𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ))
15 max2 13014 . . . . . . . . . . 11 ((𝐷 ∈ ℝ ∧ 𝑤 ∈ ℝ) → 𝑤 ≤ if(𝐷𝑤, 𝑤, 𝐷))
1615ad4ant23 750 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → 𝑤 ≤ if(𝐷𝑤, 𝑤, 𝐷))
17 simplr 766 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → 𝑤 ∈ ℝ)
18 simpllr 773 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → 𝐷 ∈ ℝ)
1917, 18ifcld 4518 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → if(𝐷𝑤, 𝑤, 𝐷) ∈ ℝ)
20 simpll 764 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) → 𝐴 ⊆ ℝ)
2120sselda 3931 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
22 letr 11162 . . . . . . . . . . 11 ((𝑤 ∈ ℝ ∧ if(𝐷𝑤, 𝑤, 𝐷) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑤 ≤ if(𝐷𝑤, 𝑤, 𝐷) ∧ if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧) → 𝑤𝑧))
2317, 19, 21, 22syl3anc 1370 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑤 ≤ if(𝐷𝑤, 𝑤, 𝐷) ∧ if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧) → 𝑤𝑧))
2416, 23mpand 692 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → (if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧𝑤𝑧))
2524imim1d 82 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → (if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
2625ralimdva 3160 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) → (∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑧𝐴 (if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
2714, 26sylan 580 . . . . . 6 ((𝜑𝑤 ∈ ℝ) → (∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑧𝐴 (if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
28 breq1 5092 . . . . . . 7 (𝑦 = if(𝐷𝑤, 𝑤, 𝐷) → (𝑦𝑧 ↔ if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧))
2928rspceaimv 3574 . . . . . 6 ((if(𝐷𝑤, 𝑤, 𝐷) ∈ (𝐷[,)+∞) ∧ ∀𝑧𝐴 (if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)) → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥))
3013, 27, 29syl6an 681 . . . . 5 ((𝜑𝑤 ∈ ℝ) → (∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3130rexlimdva 3148 . . . 4 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3231ralimdv 3162 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
334, 32sylbid 239 . 2 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 → ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
34 pnfxr 11122 . . . . . 6 +∞ ∈ ℝ*
35 icossre 13253 . . . . . 6 ((𝐷 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐷[,)+∞) ⊆ ℝ)
366, 34, 35sylancl 586 . . . . 5 (𝜑 → (𝐷[,)+∞) ⊆ ℝ)
37 ssrexv 3998 . . . . 5 ((𝐷[,)+∞) ⊆ ℝ → (∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3836, 37syl 17 . . . 4 (𝜑 → (∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3938ralimdv 3162 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
401, 2, 3rlim2 15296 . . 3 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
4139, 40sylibrd 258 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → (𝑧𝐴𝐵) ⇝𝑟 𝐶))
4233, 41impbid 211 1 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2105  wral 3061  wrex 3070  wss 3897  ifcif 4472   class class class wbr 5089  cmpt 5172  cfv 6473  (class class class)co 7329  cc 10962  cr 10963  +∞cpnf 11099  *cxr 11101   < clt 11102  cle 11103  cmin 11298  +crp 12823  [,)cico 13174  abscabs 15036  𝑟 crli 15285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-pre-lttri 11038  ax-pre-lttrn 11039
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-po 5526  df-so 5527  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-ov 7332  df-oprab 7333  df-mpo 7334  df-er 8561  df-pm 8681  df-en 8797  df-dom 8798  df-sdom 8799  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-ico 13178  df-rlim 15289
This theorem is referenced by:  rlimresb  15365  rlimsqzlem  15451  rlimcnp  26213  signsply0  32771
  Copyright terms: Public domain W3C validator