MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim3 Structured version   Visualization version   GIF version

Theorem rlim3 15135
Description: Restrict the range of the domain bound to reals greater than some 𝐷 ∈ ℝ. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlim2.1 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
rlim2.2 (𝜑𝐴 ⊆ ℝ)
rlim2.3 (𝜑𝐶 ∈ ℂ)
rlim3.4 (𝜑𝐷 ∈ ℝ)
Assertion
Ref Expression
rlim3 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦   𝑦,𝐷,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)   𝐷(𝑥)

Proof of Theorem rlim3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 rlim2.1 . . . 4 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
2 rlim2.2 . . . 4 (𝜑𝐴 ⊆ ℝ)
3 rlim2.3 . . . 4 (𝜑𝐶 ∈ ℂ)
41, 2, 3rlim2 15133 . . 3 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
5 simpr 484 . . . . . . . 8 ((𝜑𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
6 rlim3.4 . . . . . . . . 9 (𝜑𝐷 ∈ ℝ)
76adantr 480 . . . . . . . 8 ((𝜑𝑤 ∈ ℝ) → 𝐷 ∈ ℝ)
85, 7ifcld 4502 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → if(𝐷𝑤, 𝑤, 𝐷) ∈ ℝ)
9 max1 12848 . . . . . . . 8 ((𝐷 ∈ ℝ ∧ 𝑤 ∈ ℝ) → 𝐷 ≤ if(𝐷𝑤, 𝑤, 𝐷))
106, 9sylan 579 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → 𝐷 ≤ if(𝐷𝑤, 𝑤, 𝐷))
11 elicopnf 13106 . . . . . . . 8 (𝐷 ∈ ℝ → (if(𝐷𝑤, 𝑤, 𝐷) ∈ (𝐷[,)+∞) ↔ (if(𝐷𝑤, 𝑤, 𝐷) ∈ ℝ ∧ 𝐷 ≤ if(𝐷𝑤, 𝑤, 𝐷))))
127, 11syl 17 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → (if(𝐷𝑤, 𝑤, 𝐷) ∈ (𝐷[,)+∞) ↔ (if(𝐷𝑤, 𝑤, 𝐷) ∈ ℝ ∧ 𝐷 ≤ if(𝐷𝑤, 𝑤, 𝐷))))
138, 10, 12mpbir2and 709 . . . . . 6 ((𝜑𝑤 ∈ ℝ) → if(𝐷𝑤, 𝑤, 𝐷) ∈ (𝐷[,)+∞))
142, 6jca 511 . . . . . . 7 (𝜑 → (𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ))
15 max2 12850 . . . . . . . . . . 11 ((𝐷 ∈ ℝ ∧ 𝑤 ∈ ℝ) → 𝑤 ≤ if(𝐷𝑤, 𝑤, 𝐷))
1615ad4ant23 749 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → 𝑤 ≤ if(𝐷𝑤, 𝑤, 𝐷))
17 simplr 765 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → 𝑤 ∈ ℝ)
18 simpllr 772 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → 𝐷 ∈ ℝ)
1917, 18ifcld 4502 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → if(𝐷𝑤, 𝑤, 𝐷) ∈ ℝ)
20 simpll 763 . . . . . . . . . . . 12 (((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) → 𝐴 ⊆ ℝ)
2120sselda 3917 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
22 letr 10999 . . . . . . . . . . 11 ((𝑤 ∈ ℝ ∧ if(𝐷𝑤, 𝑤, 𝐷) ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑤 ≤ if(𝐷𝑤, 𝑤, 𝐷) ∧ if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧) → 𝑤𝑧))
2317, 19, 21, 22syl3anc 1369 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑤 ≤ if(𝐷𝑤, 𝑤, 𝐷) ∧ if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧) → 𝑤𝑧))
2416, 23mpand 691 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → (if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧𝑤𝑧))
2524imim1d 82 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) ∧ 𝑧𝐴) → ((𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → (if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
2625ralimdva 3102 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) ∧ 𝑤 ∈ ℝ) → (∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑧𝐴 (if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
2714, 26sylan 579 . . . . . 6 ((𝜑𝑤 ∈ ℝ) → (∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑧𝐴 (if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
28 breq1 5073 . . . . . . 7 (𝑦 = if(𝐷𝑤, 𝑤, 𝐷) → (𝑦𝑧 ↔ if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧))
2928rspceaimv 3557 . . . . . 6 ((if(𝐷𝑤, 𝑤, 𝐷) ∈ (𝐷[,)+∞) ∧ ∀𝑧𝐴 (if(𝐷𝑤, 𝑤, 𝐷) ≤ 𝑧 → (abs‘(𝐵𝐶)) < 𝑥)) → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥))
3013, 27, 29syl6an 680 . . . . 5 ((𝜑𝑤 ∈ ℝ) → (∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3130rexlimdva 3212 . . . 4 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3231ralimdv 3103 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑤 ∈ ℝ ∀𝑧𝐴 (𝑤𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
334, 32sylbid 239 . 2 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 → ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
34 pnfxr 10960 . . . . . 6 +∞ ∈ ℝ*
35 icossre 13089 . . . . . 6 ((𝐷 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐷[,)+∞) ⊆ ℝ)
366, 34, 35sylancl 585 . . . . 5 (𝜑 → (𝐷[,)+∞) ⊆ ℝ)
37 ssrexv 3984 . . . . 5 ((𝐷[,)+∞) ⊆ ℝ → (∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3836, 37syl 17 . . . 4 (𝜑 → (∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3938ralimdv 3103 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
401, 2, 3rlim2 15133 . . 3 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
4139, 40sylibrd 258 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥) → (𝑧𝐴𝐵) ⇝𝑟 𝐶))
4233, 41impbid 211 1 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wral 3063  wrex 3064  wss 3883  ifcif 4456   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135  +crp 12659  [,)cico 13010  abscabs 14873  𝑟 crli 15122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-ico 13014  df-rlim 15126
This theorem is referenced by:  rlimresb  15202  rlimsqzlem  15288  rlimcnp  26020  signsply0  32430
  Copyright terms: Public domain W3C validator