MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfacfisf Structured version   Visualization version   GIF version

Theorem chfacfisf 21465
Description: The "characteristic factor function" is a function from the nonnegative integers to polynomial matrices. (Contributed by AV, 8-Nov-2019.)
Hypotheses
Ref Expression
chfacfisf.a 𝐴 = (𝑁 Mat 𝑅)
chfacfisf.b 𝐵 = (Base‘𝐴)
chfacfisf.p 𝑃 = (Poly1𝑅)
chfacfisf.y 𝑌 = (𝑁 Mat 𝑃)
chfacfisf.r × = (.r𝑌)
chfacfisf.s = (-g𝑌)
chfacfisf.0 0 = (0g𝑌)
chfacfisf.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chfacfisf.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
Assertion
Ref Expression
chfacfisf (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑌   𝑛,𝑏   𝑛,𝑠
Allowed substitution hints:   𝐴(𝑛,𝑠,𝑏)   𝐵(𝑠,𝑏)   𝑃(𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑛,𝑠,𝑏)   × (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑌(𝑠,𝑏)   0 (𝑛,𝑠,𝑏)

Proof of Theorem chfacfisf
StepHypRef Expression
1 chfacfisf.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
2 chfacfisf.y . . . . . . . . 9 𝑌 = (𝑁 Mat 𝑃)
31, 2pmatring 21304 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring)
433adant3 1129 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
5 ringgrp 19305 . . . . . . 7 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
64, 5syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑌 ∈ Grp)
76adantr 484 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Grp)
8 eqid 2824 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
9 chfacfisf.0 . . . . . . . 8 0 = (0g𝑌)
108, 9ring0cl 19325 . . . . . . 7 (𝑌 ∈ Ring → 0 ∈ (Base‘𝑌))
114, 10syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 0 ∈ (Base‘𝑌))
1211adantr 484 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 0 ∈ (Base‘𝑌))
134adantr 484 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Ring)
14 chfacfisf.t . . . . . . . 8 𝑇 = (𝑁 matToPolyMat 𝑅)
15 chfacfisf.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
16 chfacfisf.b . . . . . . . 8 𝐵 = (Base‘𝐴)
1714, 15, 16, 1, 2mat2pmatbas 21337 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
1817adantr 484 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇𝑀) ∈ (Base‘𝑌))
19 3simpa 1145 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
20 elmapi 8425 . . . . . . . . . . 11 (𝑏 ∈ (𝐵m (0...𝑠)) → 𝑏:(0...𝑠)⟶𝐵)
2120adantl 485 . . . . . . . . . 10 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑏:(0...𝑠)⟶𝐵)
22 nnnn0 11904 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ → 𝑠 ∈ ℕ0)
23 nn0uz 12280 . . . . . . . . . . . . 13 0 = (ℤ‘0)
2422, 23eleqtrdi 2926 . . . . . . . . . . . 12 (𝑠 ∈ ℕ → 𝑠 ∈ (ℤ‘0))
25 eluzfz1 12921 . . . . . . . . . . . 12 (𝑠 ∈ (ℤ‘0) → 0 ∈ (0...𝑠))
2624, 25syl 17 . . . . . . . . . . 11 (𝑠 ∈ ℕ → 0 ∈ (0...𝑠))
2726adantr 484 . . . . . . . . . 10 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 0 ∈ (0...𝑠))
2821, 27ffvelrnd 6844 . . . . . . . . 9 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑏‘0) ∈ 𝐵)
2919, 28anim12i 615 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑏‘0) ∈ 𝐵))
30 df-3an 1086 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑏‘0) ∈ 𝐵))
3129, 30sylibr 237 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵))
3214, 15, 16, 1, 2mat2pmatbas 21337 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
3331, 32syl 17 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
34 chfacfisf.r . . . . . . 7 × = (.r𝑌)
358, 34ringcl 19317 . . . . . 6 ((𝑌 ∈ Ring ∧ (𝑇𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌)) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
3613, 18, 33, 35syl3anc 1368 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
37 chfacfisf.s . . . . . 6 = (-g𝑌)
388, 37grpsubcl 18182 . . . . 5 ((𝑌 ∈ Grp ∧ 0 ∈ (Base‘𝑌) ∧ ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌)) → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) ∈ (Base‘𝑌))
397, 12, 36, 38syl3anc 1368 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) ∈ (Base‘𝑌))
4039ad2antrr 725 . . 3 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) ∈ (Base‘𝑌))
4122adantr 484 . . . . . . . . 9 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑠 ∈ ℕ0)
4219, 41anim12i 615 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑠 ∈ ℕ0))
43 df-3an 1086 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑠 ∈ ℕ0))
4442, 43sylibr 237 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0))
45 eluzfz2 12922 . . . . . . . . . 10 (𝑠 ∈ (ℤ‘0) → 𝑠 ∈ (0...𝑠))
4624, 45syl 17 . . . . . . . . 9 (𝑠 ∈ ℕ → 𝑠 ∈ (0...𝑠))
4746anim1ci 618 . . . . . . . 8 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑏 ∈ (𝐵m (0...𝑠)) ∧ 𝑠 ∈ (0...𝑠)))
4847adantl 485 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑏 ∈ (𝐵m (0...𝑠)) ∧ 𝑠 ∈ (0...𝑠)))
4915, 16, 1, 2, 14m2pmfzmap 21358 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵m (0...𝑠)) ∧ 𝑠 ∈ (0...𝑠))) → (𝑇‘(𝑏𝑠)) ∈ (Base‘𝑌))
5044, 48, 49syl2anc 587 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏𝑠)) ∈ (Base‘𝑌))
5150adantr 484 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑏𝑠)) ∈ (Base‘𝑌))
5251ad2antrr 725 . . . 4 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 = (𝑠 + 1)) → (𝑇‘(𝑏𝑠)) ∈ (Base‘𝑌))
5312ad4antr 731 . . . . 5 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ (𝑠 + 1) < 𝑛) → 0 ∈ (Base‘𝑌))
54 nn0re 11906 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
5554adantl 485 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℝ)
56 peano2nn 11649 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℕ)
5756nnred 11652 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℝ)
5857adantr 484 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑠 + 1) ∈ ℝ)
5955, 58lenltd 10785 . . . . . . . . . . . . 13 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑛 ≤ (𝑠 + 1) ↔ ¬ (𝑠 + 1) < 𝑛))
60 nesym 3070 . . . . . . . . . . . . . . 15 ((𝑠 + 1) ≠ 𝑛 ↔ ¬ 𝑛 = (𝑠 + 1))
61 ltlen 10740 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℝ ∧ (𝑠 + 1) ∈ ℝ) → (𝑛 < (𝑠 + 1) ↔ (𝑛 ≤ (𝑠 + 1) ∧ (𝑠 + 1) ≠ 𝑛)))
6254, 57, 61syl2anr 599 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑛 < (𝑠 + 1) ↔ (𝑛 ≤ (𝑠 + 1) ∧ (𝑠 + 1) ≠ 𝑛)))
6362biimprd 251 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (𝑠 + 1) ∧ (𝑠 + 1) ≠ 𝑛) → 𝑛 < (𝑠 + 1)))
6463expcomd 420 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → ((𝑠 + 1) ≠ 𝑛 → (𝑛 ≤ (𝑠 + 1) → 𝑛 < (𝑠 + 1))))
6560, 64syl5bir 246 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (¬ 𝑛 = (𝑠 + 1) → (𝑛 ≤ (𝑠 + 1) → 𝑛 < (𝑠 + 1))))
6665com23 86 . . . . . . . . . . . . 13 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑛 ≤ (𝑠 + 1) → (¬ 𝑛 = (𝑠 + 1) → 𝑛 < (𝑠 + 1))))
6759, 66sylbird 263 . . . . . . . . . . . 12 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (¬ (𝑠 + 1) < 𝑛 → (¬ 𝑛 = (𝑠 + 1) → 𝑛 < (𝑠 + 1))))
6867impcomd 415 . . . . . . . . . . 11 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1)))
6968ex 416 . . . . . . . . . 10 (𝑠 ∈ ℕ → (𝑛 ∈ ℕ0 → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1))))
7069ad2antrl 727 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑛 ∈ ℕ0 → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1))))
7170imp 410 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1)))
7271adantr 484 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1)))
733, 5syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Grp)
74733adant3 1129 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑌 ∈ Grp)
7574ad4antr 731 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → 𝑌 ∈ Grp)
7619ad4antr 731 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
7721ad4antlr 732 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → 𝑏:(0...𝑠)⟶𝐵)
78 neqne 3022 . . . . . . . . . . . . . . . . 17 𝑛 = 0 → 𝑛 ≠ 0)
7978anim2i 619 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0) → (𝑛 ∈ ℕ0𝑛 ≠ 0))
80 elnnne0 11911 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℕ0𝑛 ≠ 0))
8179, 80sylibr 237 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℕ)
82 nnm1nn0 11938 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
8381, 82syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0) → (𝑛 − 1) ∈ ℕ0)
8483ad4ant23 752 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑛 − 1) ∈ ℕ0)
8541ad4antlr 732 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → 𝑠 ∈ ℕ0)
8662simprbda 502 . . . . . . . . . . . . . . . . . . 19 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛 ≤ (𝑠 + 1))
8755adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛 ∈ ℝ)
88 1red 10641 . . . . . . . . . . . . . . . . . . . 20 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 1 ∈ ℝ)
89 nnre 11644 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℕ → 𝑠 ∈ ℝ)
9089ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑠 ∈ ℝ)
9187, 88, 90lesubaddd 11236 . . . . . . . . . . . . . . . . . . 19 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → ((𝑛 − 1) ≤ 𝑠𝑛 ≤ (𝑠 + 1)))
9286, 91mpbird 260 . . . . . . . . . . . . . . . . . 18 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑛 − 1) ≤ 𝑠)
9392exp31 423 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ → (𝑛 ∈ ℕ0 → (𝑛 < (𝑠 + 1) → (𝑛 − 1) ≤ 𝑠)))
9493ad2antrl 727 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑛 ∈ ℕ0 → (𝑛 < (𝑠 + 1) → (𝑛 − 1) ≤ 𝑠)))
9594imp 410 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → (𝑛 < (𝑠 + 1) → (𝑛 − 1) ≤ 𝑠))
9695adantr 484 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (𝑛 < (𝑠 + 1) → (𝑛 − 1) ≤ 𝑠))
9796imp 410 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑛 − 1) ≤ 𝑠)
98 elfz2nn0 13005 . . . . . . . . . . . . 13 ((𝑛 − 1) ∈ (0...𝑠) ↔ ((𝑛 − 1) ∈ ℕ0𝑠 ∈ ℕ0 ∧ (𝑛 − 1) ≤ 𝑠))
9984, 85, 97, 98syl3anbrc 1340 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑛 − 1) ∈ (0...𝑠))
10077, 99ffvelrnd 6844 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑏‘(𝑛 − 1)) ∈ 𝐵)
101 df-3an 1086 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑛 − 1)) ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑏‘(𝑛 − 1)) ∈ 𝐵))
10276, 100, 101sylanbrc 586 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑛 − 1)) ∈ 𝐵))
10314, 15, 16, 1, 2mat2pmatbas 21337 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑛 − 1)) ∈ 𝐵) → (𝑇‘(𝑏‘(𝑛 − 1))) ∈ (Base‘𝑌))
104102, 103syl 17 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑇‘(𝑏‘(𝑛 − 1))) ∈ (Base‘𝑌))
10513ad2antrr 725 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑌 ∈ Ring)
10618ad2antrr 725 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑇𝑀) ∈ (Base‘𝑌))
10744ad2antrr 725 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0))
108 simprr 772 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑏 ∈ (𝐵m (0...𝑠)))
109108ad2antrr 725 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑏 ∈ (𝐵m (0...𝑠)))
110 simplr 768 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛 ∈ ℕ0)
11122ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑠 ∈ ℕ0)
112 nn0z 12005 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
113 nnz 12004 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℕ → 𝑠 ∈ ℤ)
114 zleltp1 12033 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑛𝑠𝑛 < (𝑠 + 1)))
115112, 113, 114syl2anr 599 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑛𝑠𝑛 < (𝑠 + 1)))
116115biimpar 481 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛𝑠)
117 elfz2nn0 13005 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0...𝑠) ↔ (𝑛 ∈ ℕ0𝑠 ∈ ℕ0𝑛𝑠))
118110, 111, 116, 117syl3anbrc 1340 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛 ∈ (0...𝑠))
119118exp31 423 . . . . . . . . . . . . . 14 (𝑠 ∈ ℕ → (𝑛 ∈ ℕ0 → (𝑛 < (𝑠 + 1) → 𝑛 ∈ (0...𝑠))))
120119ad2antrl 727 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑛 ∈ ℕ0 → (𝑛 < (𝑠 + 1) → 𝑛 ∈ (0...𝑠))))
121120imp31 421 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛 ∈ (0...𝑠))
12215, 16, 1, 2, 14m2pmfzmap 21358 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵m (0...𝑠)) ∧ 𝑛 ∈ (0...𝑠))) → (𝑇‘(𝑏𝑛)) ∈ (Base‘𝑌))
123107, 109, 121, 122syl12anc 835 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑇‘(𝑏𝑛)) ∈ (Base‘𝑌))
1248, 34ringcl 19317 . . . . . . . . . . 11 ((𝑌 ∈ Ring ∧ (𝑇𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏𝑛)) ∈ (Base‘𝑌)) → ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) ∈ (Base‘𝑌))
125105, 106, 123, 124syl3anc 1368 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) ∈ (Base‘𝑌))
126125adantlr 714 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) ∈ (Base‘𝑌))
1278, 37grpsubcl 18182 . . . . . . . . 9 ((𝑌 ∈ Grp ∧ (𝑇‘(𝑏‘(𝑛 − 1))) ∈ (Base‘𝑌) ∧ ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) ∈ (Base‘𝑌)) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) ∈ (Base‘𝑌))
12875, 104, 126, 127syl3anc 1368 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) ∈ (Base‘𝑌))
129128ex 416 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (𝑛 < (𝑠 + 1) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) ∈ (Base‘𝑌)))
13072, 129syld 47 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) ∈ (Base‘𝑌)))
131130impl 459 . . . . 5 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) ∈ (Base‘𝑌))
13253, 131ifclda 4485 . . . 4 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) → if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))) ∈ (Base‘𝑌))
13352, 132ifclda 4485 . . 3 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))) ∈ (Base‘𝑌))
13440, 133ifclda 4485 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) ∈ (Base‘𝑌))
135 chfacfisf.g . 2 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
136134, 135fmptd 6870 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  ifcif 4451   class class class wbr 5053  cmpt 5133  wf 6340  cfv 6344  (class class class)co 7150  m cmap 8403  Fincfn 8506  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   < clt 10674  cle 10675  cmin 10869  cn 11637  0cn0 11897  cz 11981  cuz 12243  ...cfz 12897  Basecbs 16486  .rcmulr 16569  0gc0g 16716  Grpcgrp 18106  -gcsg 18108  Ringcrg 19300  Poly1cpl1 20348   Mat cmat 21019   matToPolyMat cmat2pmat 21315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-ot 4560  df-uni 4826  df-int 4864  df-iun 4908  df-iin 4909  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-isom 6353  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7404  df-ofr 7405  df-om 7576  df-1st 7685  df-2nd 7686  df-supp 7828  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-2o 8100  df-oadd 8103  df-er 8286  df-map 8405  df-pm 8406  df-ixp 8459  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-fsupp 8832  df-sup 8904  df-oi 8972  df-card 9366  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11700  df-3 11701  df-4 11702  df-5 11703  df-6 11704  df-7 11705  df-8 11706  df-9 11707  df-n0 11898  df-z 11982  df-dec 12099  df-uz 12244  df-fz 12898  df-fzo 13041  df-seq 13377  df-hash 13699  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-hom 16592  df-cco 16593  df-0g 16718  df-gsum 16719  df-prds 16724  df-pws 16726  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-mhm 17959  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-mulg 18228  df-subg 18279  df-ghm 18359  df-cntz 18450  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-subrg 19536  df-lmod 19639  df-lss 19707  df-sra 19947  df-rgmod 19948  df-ascl 20090  df-psr 20139  df-mpl 20141  df-opsr 20143  df-psr1 20351  df-ply1 20353  df-dsmm 20879  df-frlm 20894  df-mamu 20998  df-mat 21020  df-mat2pmat 21318
This theorem is referenced by:  chfacfscmulcl  21468  chfacfscmulgsum  21471  chfacfpmmulcl  21472  chfacfpmmulgsum  21475
  Copyright terms: Public domain W3C validator