MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chfacfisf Structured version   Visualization version   GIF version

Theorem chfacfisf 22808
Description: The "characteristic factor function" is a function from the nonnegative integers to polynomial matrices. (Contributed by AV, 8-Nov-2019.)
Hypotheses
Ref Expression
chfacfisf.a 𝐴 = (𝑁 Mat 𝑅)
chfacfisf.b 𝐵 = (Base‘𝐴)
chfacfisf.p 𝑃 = (Poly1𝑅)
chfacfisf.y 𝑌 = (𝑁 Mat 𝑃)
chfacfisf.r × = (.r𝑌)
chfacfisf.s = (-g𝑌)
chfacfisf.0 0 = (0g𝑌)
chfacfisf.t 𝑇 = (𝑁 matToPolyMat 𝑅)
chfacfisf.g 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
Assertion
Ref Expression
chfacfisf (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑌   𝑛,𝑏   𝑛,𝑠
Allowed substitution hints:   𝐴(𝑛,𝑠,𝑏)   𝐵(𝑠,𝑏)   𝑃(𝑛,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑛,𝑠,𝑏)   × (𝑛,𝑠,𝑏)   𝐺(𝑛,𝑠,𝑏)   𝑀(𝑠,𝑏)   (𝑛,𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑌(𝑠,𝑏)   0 (𝑛,𝑠,𝑏)

Proof of Theorem chfacfisf
StepHypRef Expression
1 chfacfisf.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
2 chfacfisf.y . . . . . . . . 9 𝑌 = (𝑁 Mat 𝑃)
31, 2pmatring 22646 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Ring)
433adant3 1132 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
5 ringgrp 20203 . . . . . . 7 (𝑌 ∈ Ring → 𝑌 ∈ Grp)
64, 5syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑌 ∈ Grp)
76adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Grp)
8 eqid 2734 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
9 chfacfisf.0 . . . . . . . 8 0 = (0g𝑌)
108, 9ring0cl 20232 . . . . . . 7 (𝑌 ∈ Ring → 0 ∈ (Base‘𝑌))
114, 10syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 0 ∈ (Base‘𝑌))
1211adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 0 ∈ (Base‘𝑌))
134adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Ring)
14 chfacfisf.t . . . . . . . 8 𝑇 = (𝑁 matToPolyMat 𝑅)
15 chfacfisf.a . . . . . . . 8 𝐴 = (𝑁 Mat 𝑅)
16 chfacfisf.b . . . . . . . 8 𝐵 = (Base‘𝐴)
1714, 15, 16, 1, 2mat2pmatbas 22680 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
1817adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇𝑀) ∈ (Base‘𝑌))
19 3simpa 1148 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
20 elmapi 8871 . . . . . . . . . . 11 (𝑏 ∈ (𝐵m (0...𝑠)) → 𝑏:(0...𝑠)⟶𝐵)
2120adantl 481 . . . . . . . . . 10 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑏:(0...𝑠)⟶𝐵)
22 nnnn0 12516 . . . . . . . . . . . . 13 (𝑠 ∈ ℕ → 𝑠 ∈ ℕ0)
23 nn0uz 12902 . . . . . . . . . . . . 13 0 = (ℤ‘0)
2422, 23eleqtrdi 2843 . . . . . . . . . . . 12 (𝑠 ∈ ℕ → 𝑠 ∈ (ℤ‘0))
25 eluzfz1 13553 . . . . . . . . . . . 12 (𝑠 ∈ (ℤ‘0) → 0 ∈ (0...𝑠))
2624, 25syl 17 . . . . . . . . . . 11 (𝑠 ∈ ℕ → 0 ∈ (0...𝑠))
2726adantr 480 . . . . . . . . . 10 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 0 ∈ (0...𝑠))
2821, 27ffvelcdmd 7085 . . . . . . . . 9 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑏‘0) ∈ 𝐵)
2919, 28anim12i 613 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑏‘0) ∈ 𝐵))
30 df-3an 1088 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑏‘0) ∈ 𝐵))
3129, 30sylibr 234 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵))
3214, 15, 16, 1, 2mat2pmatbas 22680 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘0) ∈ 𝐵) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
3331, 32syl 17 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌))
34 chfacfisf.r . . . . . . 7 × = (.r𝑌)
358, 34ringcl 20215 . . . . . 6 ((𝑌 ∈ Ring ∧ (𝑇𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘0)) ∈ (Base‘𝑌)) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
3613, 18, 33, 35syl3anc 1372 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌))
37 chfacfisf.s . . . . . 6 = (-g𝑌)
388, 37grpsubcl 19007 . . . . 5 ((𝑌 ∈ Grp ∧ 0 ∈ (Base‘𝑌) ∧ ((𝑇𝑀) × (𝑇‘(𝑏‘0))) ∈ (Base‘𝑌)) → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) ∈ (Base‘𝑌))
397, 12, 36, 38syl3anc 1372 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) ∈ (Base‘𝑌))
4039ad2antrr 726 . . 3 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 = 0) → ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))) ∈ (Base‘𝑌))
4122adantr 480 . . . . . . . . 9 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → 𝑠 ∈ ℕ0)
4219, 41anim12i 613 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑠 ∈ ℕ0))
43 df-3an 1088 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑠 ∈ ℕ0))
4442, 43sylibr 234 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0))
45 eluzfz2 13554 . . . . . . . . . 10 (𝑠 ∈ (ℤ‘0) → 𝑠 ∈ (0...𝑠))
4624, 45syl 17 . . . . . . . . 9 (𝑠 ∈ ℕ → 𝑠 ∈ (0...𝑠))
4746anim1ci 616 . . . . . . . 8 ((𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑏 ∈ (𝐵m (0...𝑠)) ∧ 𝑠 ∈ (0...𝑠)))
4847adantl 481 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑏 ∈ (𝐵m (0...𝑠)) ∧ 𝑠 ∈ (0...𝑠)))
4915, 16, 1, 2, 14m2pmfzmap 22701 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵m (0...𝑠)) ∧ 𝑠 ∈ (0...𝑠))) → (𝑇‘(𝑏𝑠)) ∈ (Base‘𝑌))
5044, 48, 49syl2anc 584 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇‘(𝑏𝑠)) ∈ (Base‘𝑌))
5150adantr 480 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → (𝑇‘(𝑏𝑠)) ∈ (Base‘𝑌))
5251ad2antrr 726 . . . 4 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 = (𝑠 + 1)) → (𝑇‘(𝑏𝑠)) ∈ (Base‘𝑌))
5312ad4antr 732 . . . . 5 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ (𝑠 + 1) < 𝑛) → 0 ∈ (Base‘𝑌))
54 nn0re 12518 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
5554adantl 481 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℝ)
56 peano2nn 12260 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℕ)
5756nnred 12263 . . . . . . . . . . . . . . 15 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℝ)
5857adantr 480 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑠 + 1) ∈ ℝ)
5955, 58lenltd 11389 . . . . . . . . . . . . 13 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑛 ≤ (𝑠 + 1) ↔ ¬ (𝑠 + 1) < 𝑛))
60 nesym 2987 . . . . . . . . . . . . . . 15 ((𝑠 + 1) ≠ 𝑛 ↔ ¬ 𝑛 = (𝑠 + 1))
61 ltlen 11344 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℝ ∧ (𝑠 + 1) ∈ ℝ) → (𝑛 < (𝑠 + 1) ↔ (𝑛 ≤ (𝑠 + 1) ∧ (𝑠 + 1) ≠ 𝑛)))
6254, 57, 61syl2anr 597 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑛 < (𝑠 + 1) ↔ (𝑛 ≤ (𝑠 + 1) ∧ (𝑠 + 1) ≠ 𝑛)))
6362biimprd 248 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → ((𝑛 ≤ (𝑠 + 1) ∧ (𝑠 + 1) ≠ 𝑛) → 𝑛 < (𝑠 + 1)))
6463expcomd 416 . . . . . . . . . . . . . . 15 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → ((𝑠 + 1) ≠ 𝑛 → (𝑛 ≤ (𝑠 + 1) → 𝑛 < (𝑠 + 1))))
6560, 64biimtrrid 243 . . . . . . . . . . . . . 14 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (¬ 𝑛 = (𝑠 + 1) → (𝑛 ≤ (𝑠 + 1) → 𝑛 < (𝑠 + 1))))
6665com23 86 . . . . . . . . . . . . 13 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑛 ≤ (𝑠 + 1) → (¬ 𝑛 = (𝑠 + 1) → 𝑛 < (𝑠 + 1))))
6759, 66sylbird 260 . . . . . . . . . . . 12 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (¬ (𝑠 + 1) < 𝑛 → (¬ 𝑛 = (𝑠 + 1) → 𝑛 < (𝑠 + 1))))
6867impcomd 411 . . . . . . . . . . 11 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1)))
6968ex 412 . . . . . . . . . 10 (𝑠 ∈ ℕ → (𝑛 ∈ ℕ0 → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1))))
7069ad2antrl 728 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑛 ∈ ℕ0 → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1))))
7170imp 406 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1)))
7271adantr 480 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → 𝑛 < (𝑠 + 1)))
733, 5syl 17 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑌 ∈ Grp)
74733adant3 1132 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑌 ∈ Grp)
7574ad4antr 732 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → 𝑌 ∈ Grp)
7619ad4antr 732 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
7721ad4antlr 733 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → 𝑏:(0...𝑠)⟶𝐵)
78 neqne 2939 . . . . . . . . . . . . . . . . 17 𝑛 = 0 → 𝑛 ≠ 0)
7978anim2i 617 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0) → (𝑛 ∈ ℕ0𝑛 ≠ 0))
80 elnnne0 12523 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℕ0𝑛 ≠ 0))
8179, 80sylibr 234 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0) → 𝑛 ∈ ℕ)
82 nnm1nn0 12550 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
8381, 82syl 17 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0 ∧ ¬ 𝑛 = 0) → (𝑛 − 1) ∈ ℕ0)
8483ad4ant23 753 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑛 − 1) ∈ ℕ0)
8541ad4antlr 733 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → 𝑠 ∈ ℕ0)
8662simprbda 498 . . . . . . . . . . . . . . . . . . 19 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛 ≤ (𝑠 + 1))
8755adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛 ∈ ℝ)
88 1red 11244 . . . . . . . . . . . . . . . . . . . 20 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 1 ∈ ℝ)
89 nnre 12255 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℕ → 𝑠 ∈ ℝ)
9089ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑠 ∈ ℝ)
9187, 88, 90lesubaddd 11842 . . . . . . . . . . . . . . . . . . 19 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → ((𝑛 − 1) ≤ 𝑠𝑛 ≤ (𝑠 + 1)))
9286, 91mpbird 257 . . . . . . . . . . . . . . . . . 18 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑛 − 1) ≤ 𝑠)
9392exp31 419 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ → (𝑛 ∈ ℕ0 → (𝑛 < (𝑠 + 1) → (𝑛 − 1) ≤ 𝑠)))
9493ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑛 ∈ ℕ0 → (𝑛 < (𝑠 + 1) → (𝑛 − 1) ≤ 𝑠)))
9594imp 406 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → (𝑛 < (𝑠 + 1) → (𝑛 − 1) ≤ 𝑠))
9695adantr 480 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (𝑛 < (𝑠 + 1) → (𝑛 − 1) ≤ 𝑠))
9796imp 406 . . . . . . . . . . . . 13 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑛 − 1) ≤ 𝑠)
98 elfz2nn0 13640 . . . . . . . . . . . . 13 ((𝑛 − 1) ∈ (0...𝑠) ↔ ((𝑛 − 1) ∈ ℕ0𝑠 ∈ ℕ0 ∧ (𝑛 − 1) ≤ 𝑠))
9984, 85, 97, 98syl3anbrc 1343 . . . . . . . . . . . 12 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑛 − 1) ∈ (0...𝑠))
10077, 99ffvelcdmd 7085 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑏‘(𝑛 − 1)) ∈ 𝐵)
101 df-3an 1088 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑛 − 1)) ∈ 𝐵) ↔ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑏‘(𝑛 − 1)) ∈ 𝐵))
10276, 100, 101sylanbrc 583 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑛 − 1)) ∈ 𝐵))
10314, 15, 16, 1, 2mat2pmatbas 22680 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑏‘(𝑛 − 1)) ∈ 𝐵) → (𝑇‘(𝑏‘(𝑛 − 1))) ∈ (Base‘𝑌))
104102, 103syl 17 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → (𝑇‘(𝑏‘(𝑛 − 1))) ∈ (Base‘𝑌))
10513ad2antrr 726 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑌 ∈ Ring)
10618ad2antrr 726 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑇𝑀) ∈ (Base‘𝑌))
10744ad2antrr 726 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0))
108 simprr 772 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑏 ∈ (𝐵m (0...𝑠)))
109108ad2antrr 726 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑏 ∈ (𝐵m (0...𝑠)))
110 simplr 768 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛 ∈ ℕ0)
11122ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑠 ∈ ℕ0)
112 nn0z 12621 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
113 nnz 12617 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ℕ → 𝑠 ∈ ℤ)
114 zleltp1 12651 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑛𝑠𝑛 < (𝑠 + 1)))
115112, 113, 114syl2anr 597 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (𝑛𝑠𝑛 < (𝑠 + 1)))
116115biimpar 477 . . . . . . . . . . . . . . . 16 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛𝑠)
117 elfz2nn0 13640 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0...𝑠) ↔ (𝑛 ∈ ℕ0𝑠 ∈ ℕ0𝑛𝑠))
118110, 111, 116, 117syl3anbrc 1343 . . . . . . . . . . . . . . 15 (((𝑠 ∈ ℕ ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛 ∈ (0...𝑠))
119118exp31 419 . . . . . . . . . . . . . 14 (𝑠 ∈ ℕ → (𝑛 ∈ ℕ0 → (𝑛 < (𝑠 + 1) → 𝑛 ∈ (0...𝑠))))
120119ad2antrl 728 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑛 ∈ ℕ0 → (𝑛 < (𝑠 + 1) → 𝑛 ∈ (0...𝑠))))
121120imp31 417 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → 𝑛 ∈ (0...𝑠))
12215, 16, 1, 2, 14m2pmfzmap 22701 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵m (0...𝑠)) ∧ 𝑛 ∈ (0...𝑠))) → (𝑇‘(𝑏𝑛)) ∈ (Base‘𝑌))
123107, 109, 121, 122syl12anc 836 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → (𝑇‘(𝑏𝑛)) ∈ (Base‘𝑌))
1248, 34ringcl 20215 . . . . . . . . . . 11 ((𝑌 ∈ Ring ∧ (𝑇𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏𝑛)) ∈ (Base‘𝑌)) → ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) ∈ (Base‘𝑌))
125105, 106, 123, 124syl3anc 1372 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ 𝑛 < (𝑠 + 1)) → ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) ∈ (Base‘𝑌))
126125adantlr 715 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) ∈ (Base‘𝑌))
1278, 37grpsubcl 19007 . . . . . . . . 9 ((𝑌 ∈ Grp ∧ (𝑇‘(𝑏‘(𝑛 − 1))) ∈ (Base‘𝑌) ∧ ((𝑇𝑀) × (𝑇‘(𝑏𝑛))) ∈ (Base‘𝑌)) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) ∈ (Base‘𝑌))
12875, 104, 126, 127syl3anc 1372 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ 𝑛 < (𝑠 + 1)) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) ∈ (Base‘𝑌))
129128ex 412 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → (𝑛 < (𝑠 + 1) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) ∈ (Base‘𝑌)))
13072, 129syld 47 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → ((¬ 𝑛 = (𝑠 + 1) ∧ ¬ (𝑠 + 1) < 𝑛) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) ∈ (Base‘𝑌)))
131130impl 455 . . . . 5 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) ∧ ¬ (𝑠 + 1) < 𝑛) → ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))) ∈ (Base‘𝑌))
13253, 131ifclda 4541 . . . 4 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) ∧ ¬ 𝑛 = (𝑠 + 1)) → if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))) ∈ (Base‘𝑌))
13352, 132ifclda 4541 . . 3 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) ∧ ¬ 𝑛 = 0) → if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛)))))) ∈ (Base‘𝑌))
13440, 133ifclda 4541 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑛 ∈ ℕ0) → if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))) ∈ (Base‘𝑌))
135 chfacfisf.g . 2 𝐺 = (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( 0 ((𝑇𝑀) × (𝑇‘(𝑏‘0)))), if(𝑛 = (𝑠 + 1), (𝑇‘(𝑏𝑠)), if((𝑠 + 1) < 𝑛, 0 , ((𝑇‘(𝑏‘(𝑛 − 1))) ((𝑇𝑀) × (𝑇‘(𝑏𝑛))))))))
136134, 135fmptd 7114 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ ∧ 𝑏 ∈ (𝐵m (0...𝑠)))) → 𝐺:ℕ0⟶(Base‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  ifcif 4505   class class class wbr 5123  cmpt 5205  wf 6537  cfv 6541  (class class class)co 7413  m cmap 8848  Fincfn 8967  cr 11136  0cc0 11137  1c1 11138   + caddc 11140   < clt 11277  cle 11278  cmin 11474  cn 12248  0cn0 12509  cz 12596  cuz 12860  ...cfz 13529  Basecbs 17229  .rcmulr 17274  0gc0g 17455  Grpcgrp 18920  -gcsg 18922  Ringcrg 20198  Poly1cpl1 22126   Mat cmat 22359   matToPolyMat cmat2pmat 22658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-ofr 7680  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14352  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-hom 17297  df-cco 17298  df-0g 17457  df-gsum 17458  df-prds 17463  df-pws 17465  df-mre 17600  df-mrc 17601  df-acs 17603  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-mhm 18765  df-submnd 18766  df-grp 18923  df-minusg 18924  df-sbg 18925  df-mulg 19055  df-subg 19110  df-ghm 19200  df-cntz 19304  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-subrng 20514  df-subrg 20538  df-lmod 20828  df-lss 20898  df-sra 21140  df-rgmod 21141  df-dsmm 21706  df-frlm 21721  df-ascl 21829  df-psr 21883  df-mpl 21885  df-opsr 21887  df-psr1 22129  df-ply1 22131  df-mamu 22343  df-mat 22360  df-mat2pmat 22661
This theorem is referenced by:  chfacfscmulcl  22811  chfacfscmulgsum  22814  chfacfpmmulcl  22815  chfacfpmmulgsum  22818
  Copyright terms: Public domain W3C validator