MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrxfr Structured version   Visualization version   GIF version

Theorem tgcgrxfr 28526
Description: A line segment can be divided at the same place as a congruent line segment is divided. Theorem 4.5 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 9-Apr-2019.)
Hypotheses
Ref Expression
tgcgrxfr.p 𝑃 = (Base‘𝐺)
tgcgrxfr.m = (dist‘𝐺)
tgcgrxfr.i 𝐼 = (Itv‘𝐺)
tgcgrxfr.r = (cgrG‘𝐺)
tgcgrxfr.g (𝜑𝐺 ∈ TarskiG)
tgcgrxfr.a (𝜑𝐴𝑃)
tgcgrxfr.b (𝜑𝐵𝑃)
tgcgrxfr.c (𝜑𝐶𝑃)
tgcgrxfr.d (𝜑𝐷𝑃)
tgcgrxfr.f (𝜑𝐹𝑃)
tgcgrxfr.1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgcgrxfr.2 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
Assertion
Ref Expression
tgcgrxfr (𝜑 → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
Distinct variable groups:   𝐴,𝑒   𝐵,𝑒   𝐶,𝑒   𝐷,𝑒   𝑒,𝐹   𝑒,𝐼   𝑃,𝑒   ,𝑒   ,𝑒   𝜑,𝑒
Allowed substitution hint:   𝐺(𝑒)

Proof of Theorem tgcgrxfr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcgrxfr.a . . . 4 (𝜑𝐴𝑃)
21adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐴𝑃)
3 tgcgrxfr.p . . . 4 𝑃 = (Base‘𝐺)
4 tgcgrxfr.m . . . 4 = (dist‘𝐺)
5 tgcgrxfr.i . . . 4 𝐼 = (Itv‘𝐺)
6 tgcgrxfr.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76adantr 480 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐺 ∈ TarskiG)
8 tgcgrxfr.d . . . . 5 (𝜑𝐷𝑃)
98adantr 480 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐷𝑃)
10 tgcgrxfr.f . . . . 5 (𝜑𝐹𝑃)
1110adantr 480 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐹𝑃)
12 simpr 484 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (♯‘𝑃) = 1)
133, 4, 5, 7, 2, 9, 11, 12tgldim0itv 28512 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐴 ∈ (𝐷𝐼𝐹))
14 tgcgrxfr.r . . . 4 = (cgrG‘𝐺)
15 tgcgrxfr.b . . . . 5 (𝜑𝐵𝑃)
1615adantr 480 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐵𝑃)
17 tgcgrxfr.c . . . . 5 (𝜑𝐶𝑃)
1817adantr 480 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐶𝑃)
193, 4, 5, 7, 2, 16, 9, 12, 2tgldim0cgr 28513 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐴 𝐵) = (𝐷 𝐴))
203, 4, 5, 7, 16, 18, 2, 12, 11tgldim0cgr 28513 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐵 𝐶) = (𝐴 𝐹))
213, 4, 5, 7, 18, 2, 11, 12, 9tgldim0cgr 28513 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐶 𝐴) = (𝐹 𝐷))
223, 4, 14, 7, 2, 16, 18, 9, 2, 11, 19, 20, 21trgcgr 28524 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐴𝐹”⟩)
23 eleq1 2829 . . . . 5 (𝑒 = 𝐴 → (𝑒 ∈ (𝐷𝐼𝐹) ↔ 𝐴 ∈ (𝐷𝐼𝐹)))
24 s3eq2 14909 . . . . . 6 (𝑒 = 𝐴 → ⟨“𝐷𝑒𝐹”⟩ = ⟨“𝐷𝐴𝐹”⟩)
2524breq2d 5155 . . . . 5 (𝑒 = 𝐴 → (⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐴𝐹”⟩))
2623, 25anbi12d 632 . . . 4 (𝑒 = 𝐴 → ((𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩) ↔ (𝐴 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐴𝐹”⟩)))
2726rspcev 3622 . . 3 ((𝐴𝑃 ∧ (𝐴 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐴𝐹”⟩)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
282, 13, 22, 27syl12anc 837 . 2 ((𝜑 ∧ (♯‘𝑃) = 1) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
296ad3antrrr 730 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝐺 ∈ TarskiG)
30 simplr 769 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝑔𝑃)
318ad3antrrr 730 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝐷𝑃)
321ad3antrrr 730 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝐴𝑃)
3315ad3antrrr 730 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝐵𝑃)
343, 4, 5, 29, 30, 31, 32, 33axtgsegcon 28472 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → ∃𝑒𝑃 (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵)))
356ad7antr 738 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐺 ∈ TarskiG)
3630ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝑔𝑃)
3736ad2antrr 726 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑔𝑃)
388ad7antr 738 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷𝑃)
39 simplr 769 . . . . . . . . . . 11 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝑒𝑃)
4039ad2antrr 726 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑒𝑃)
41 simplr 769 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑓𝑃)
42 simpllr 776 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵)))
4342simpld 494 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷 ∈ (𝑔𝐼𝑒))
44 simprl 771 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑒 ∈ (𝑔𝐼𝑓))
453, 4, 5, 35, 37, 38, 40, 41, 43, 44tgbtwnexch3 28502 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑒 ∈ (𝐷𝐼𝑓))
461ad7antr 738 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐴𝑃)
4717ad7antr 738 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐶𝑃)
4810ad7antr 738 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐹𝑃)
49 simp-5r 786 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔))
5049simprd 495 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷𝑔)
5150necomd 2996 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑔𝐷)
523, 4, 5, 35, 37, 38, 40, 41, 43, 44tgbtwnexch 28506 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷 ∈ (𝑔𝐼𝑓))
5349simpld 494 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷 ∈ (𝐹𝐼𝑔))
543, 4, 5, 35, 48, 38, 37, 53tgbtwncom 28496 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷 ∈ (𝑔𝐼𝐹))
5515ad7antr 738 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐵𝑃)
56 tgcgrxfr.1 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
5756ad7antr 738 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐵 ∈ (𝐴𝐼𝐶))
5842simprd 495 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 𝑒) = (𝐴 𝐵))
59 simprr 773 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝑒 𝑓) = (𝐵 𝐶))
603, 4, 5, 35, 38, 40, 41, 46, 55, 47, 45, 57, 58, 59tgcgrextend 28493 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 𝑓) = (𝐴 𝐶))
61 tgcgrxfr.2 . . . . . . . . . . . . 13 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
6261ad7antr 738 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐴 𝐶) = (𝐷 𝐹))
6362eqcomd 2743 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 𝐹) = (𝐴 𝐶))
643, 4, 5, 35, 38, 46, 47, 37, 41, 48, 51, 52, 54, 60, 63tgsegconeq 28494 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑓 = 𝐹)
6564oveq2d 7447 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷𝐼𝑓) = (𝐷𝐼𝐹))
6645, 65eleqtrd 2843 . . . . . . . 8 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑒 ∈ (𝐷𝐼𝐹))
6758eqcomd 2743 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐴 𝐵) = (𝐷 𝑒))
6864oveq2d 7447 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝑒 𝑓) = (𝑒 𝐹))
6959, 68eqtr3d 2779 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐵 𝐶) = (𝑒 𝐹))
703, 4, 5, 6, 1, 17, 8, 10, 61tgcgrcomlr 28488 . . . . . . . . . 10 (𝜑 → (𝐶 𝐴) = (𝐹 𝐷))
7170ad7antr 738 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐶 𝐴) = (𝐹 𝐷))
723, 4, 14, 35, 46, 55, 47, 38, 40, 48, 67, 69, 71trgcgr 28524 . . . . . . . 8 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩)
7366, 72jca 511 . . . . . . 7 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
7429ad2antrr 726 . . . . . . . 8 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝐺 ∈ TarskiG)
7533ad2antrr 726 . . . . . . . 8 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝐵𝑃)
7617ad5antr 734 . . . . . . . 8 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝐶𝑃)
773, 4, 5, 74, 36, 39, 75, 76axtgsegcon 28472 . . . . . . 7 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → ∃𝑓𝑃 (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶)))
7873, 77r19.29a 3162 . . . . . 6 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
7978ex 412 . . . . 5 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) → ((𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵)) → (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩)))
8079reximdva 3168 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → (∃𝑒𝑃 (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩)))
8134, 80mpd 15 . . 3 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
826adantr 480 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐺 ∈ TarskiG)
8310adantr 480 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐹𝑃)
848adantr 480 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐷𝑃)
85 simpr 484 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤ (♯‘𝑃))
863, 4, 5, 82, 83, 84, 85tgbtwndiff 28514 . . 3 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → ∃𝑔𝑃 (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔))
8781, 86r19.29a 3162 . 2 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
883, 1tgldimor 28510 . 2 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
8928, 87, 88mpjaodan 961 1 (𝜑 → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  1c1 11156  cle 11296  2c2 12321  chash 14369  ⟨“cs3 14881  Basecbs 17247  distcds 17306  TarskiGcstrkg 28435  Itvcitv 28441  cgrGccgrg 28518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-s2 14887  df-s3 14888  df-trkgc 28456  df-trkgb 28457  df-trkgcb 28458  df-trkg 28461  df-cgrg 28519
This theorem is referenced by:  tgbtwnxfr  28538  lnext  28575  midexlem  28700
  Copyright terms: Public domain W3C validator