MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrxfr Structured version   Visualization version   GIF version

Theorem tgcgrxfr 28489
Description: A line segment can be divided at the same place as a congruent line segment is divided. Theorem 4.5 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 9-Apr-2019.)
Hypotheses
Ref Expression
tgcgrxfr.p 𝑃 = (Base‘𝐺)
tgcgrxfr.m = (dist‘𝐺)
tgcgrxfr.i 𝐼 = (Itv‘𝐺)
tgcgrxfr.r = (cgrG‘𝐺)
tgcgrxfr.g (𝜑𝐺 ∈ TarskiG)
tgcgrxfr.a (𝜑𝐴𝑃)
tgcgrxfr.b (𝜑𝐵𝑃)
tgcgrxfr.c (𝜑𝐶𝑃)
tgcgrxfr.d (𝜑𝐷𝑃)
tgcgrxfr.f (𝜑𝐹𝑃)
tgcgrxfr.1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgcgrxfr.2 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
Assertion
Ref Expression
tgcgrxfr (𝜑 → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
Distinct variable groups:   𝐴,𝑒   𝐵,𝑒   𝐶,𝑒   𝐷,𝑒   𝑒,𝐹   𝑒,𝐼   𝑃,𝑒   ,𝑒   ,𝑒   𝜑,𝑒
Allowed substitution hint:   𝐺(𝑒)

Proof of Theorem tgcgrxfr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcgrxfr.a . . . 4 (𝜑𝐴𝑃)
21adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐴𝑃)
3 tgcgrxfr.p . . . 4 𝑃 = (Base‘𝐺)
4 tgcgrxfr.m . . . 4 = (dist‘𝐺)
5 tgcgrxfr.i . . . 4 𝐼 = (Itv‘𝐺)
6 tgcgrxfr.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76adantr 480 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐺 ∈ TarskiG)
8 tgcgrxfr.d . . . . 5 (𝜑𝐷𝑃)
98adantr 480 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐷𝑃)
10 tgcgrxfr.f . . . . 5 (𝜑𝐹𝑃)
1110adantr 480 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐹𝑃)
12 simpr 484 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (♯‘𝑃) = 1)
133, 4, 5, 7, 2, 9, 11, 12tgldim0itv 28475 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐴 ∈ (𝐷𝐼𝐹))
14 tgcgrxfr.r . . . 4 = (cgrG‘𝐺)
15 tgcgrxfr.b . . . . 5 (𝜑𝐵𝑃)
1615adantr 480 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐵𝑃)
17 tgcgrxfr.c . . . . 5 (𝜑𝐶𝑃)
1817adantr 480 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐶𝑃)
193, 4, 5, 7, 2, 16, 9, 12, 2tgldim0cgr 28476 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐴 𝐵) = (𝐷 𝐴))
203, 4, 5, 7, 16, 18, 2, 12, 11tgldim0cgr 28476 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐵 𝐶) = (𝐴 𝐹))
213, 4, 5, 7, 18, 2, 11, 12, 9tgldim0cgr 28476 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐶 𝐴) = (𝐹 𝐷))
223, 4, 14, 7, 2, 16, 18, 9, 2, 11, 19, 20, 21trgcgr 28487 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐴𝐹”⟩)
23 eleq1 2817 . . . . 5 (𝑒 = 𝐴 → (𝑒 ∈ (𝐷𝐼𝐹) ↔ 𝐴 ∈ (𝐷𝐼𝐹)))
24 s3eq2 14769 . . . . . 6 (𝑒 = 𝐴 → ⟨“𝐷𝑒𝐹”⟩ = ⟨“𝐷𝐴𝐹”⟩)
2524breq2d 5101 . . . . 5 (𝑒 = 𝐴 → (⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐴𝐹”⟩))
2623, 25anbi12d 632 . . . 4 (𝑒 = 𝐴 → ((𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩) ↔ (𝐴 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐴𝐹”⟩)))
2726rspcev 3575 . . 3 ((𝐴𝑃 ∧ (𝐴 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐴𝐹”⟩)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
282, 13, 22, 27syl12anc 836 . 2 ((𝜑 ∧ (♯‘𝑃) = 1) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
296ad3antrrr 730 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝐺 ∈ TarskiG)
30 simplr 768 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝑔𝑃)
318ad3antrrr 730 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝐷𝑃)
321ad3antrrr 730 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝐴𝑃)
3315ad3antrrr 730 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝐵𝑃)
343, 4, 5, 29, 30, 31, 32, 33axtgsegcon 28435 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → ∃𝑒𝑃 (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵)))
356ad7antr 738 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐺 ∈ TarskiG)
3630ad2antrr 726 . . . . . . . . . . 11 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝑔𝑃)
3736ad2antrr 726 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑔𝑃)
388ad7antr 738 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷𝑃)
39 simplr 768 . . . . . . . . . . 11 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝑒𝑃)
4039ad2antrr 726 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑒𝑃)
41 simplr 768 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑓𝑃)
42 simpllr 775 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵)))
4342simpld 494 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷 ∈ (𝑔𝐼𝑒))
44 simprl 770 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑒 ∈ (𝑔𝐼𝑓))
453, 4, 5, 35, 37, 38, 40, 41, 43, 44tgbtwnexch3 28465 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑒 ∈ (𝐷𝐼𝑓))
461ad7antr 738 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐴𝑃)
4717ad7antr 738 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐶𝑃)
4810ad7antr 738 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐹𝑃)
49 simp-5r 785 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔))
5049simprd 495 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷𝑔)
5150necomd 2981 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑔𝐷)
523, 4, 5, 35, 37, 38, 40, 41, 43, 44tgbtwnexch 28469 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷 ∈ (𝑔𝐼𝑓))
5349simpld 494 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷 ∈ (𝐹𝐼𝑔))
543, 4, 5, 35, 48, 38, 37, 53tgbtwncom 28459 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷 ∈ (𝑔𝐼𝐹))
5515ad7antr 738 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐵𝑃)
56 tgcgrxfr.1 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
5756ad7antr 738 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐵 ∈ (𝐴𝐼𝐶))
5842simprd 495 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 𝑒) = (𝐴 𝐵))
59 simprr 772 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝑒 𝑓) = (𝐵 𝐶))
603, 4, 5, 35, 38, 40, 41, 46, 55, 47, 45, 57, 58, 59tgcgrextend 28456 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 𝑓) = (𝐴 𝐶))
61 tgcgrxfr.2 . . . . . . . . . . . . 13 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
6261ad7antr 738 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐴 𝐶) = (𝐷 𝐹))
6362eqcomd 2736 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 𝐹) = (𝐴 𝐶))
643, 4, 5, 35, 38, 46, 47, 37, 41, 48, 51, 52, 54, 60, 63tgsegconeq 28457 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑓 = 𝐹)
6564oveq2d 7357 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷𝐼𝑓) = (𝐷𝐼𝐹))
6645, 65eleqtrd 2831 . . . . . . . 8 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑒 ∈ (𝐷𝐼𝐹))
6758eqcomd 2736 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐴 𝐵) = (𝐷 𝑒))
6864oveq2d 7357 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝑒 𝑓) = (𝑒 𝐹))
6959, 68eqtr3d 2767 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐵 𝐶) = (𝑒 𝐹))
703, 4, 5, 6, 1, 17, 8, 10, 61tgcgrcomlr 28451 . . . . . . . . . 10 (𝜑 → (𝐶 𝐴) = (𝐹 𝐷))
7170ad7antr 738 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐶 𝐴) = (𝐹 𝐷))
723, 4, 14, 35, 46, 55, 47, 38, 40, 48, 67, 69, 71trgcgr 28487 . . . . . . . 8 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩)
7366, 72jca 511 . . . . . . 7 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
7429ad2antrr 726 . . . . . . . 8 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝐺 ∈ TarskiG)
7533ad2antrr 726 . . . . . . . 8 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝐵𝑃)
7617ad5antr 734 . . . . . . . 8 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝐶𝑃)
773, 4, 5, 74, 36, 39, 75, 76axtgsegcon 28435 . . . . . . 7 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → ∃𝑓𝑃 (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶)))
7873, 77r19.29a 3138 . . . . . 6 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
7978ex 412 . . . . 5 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) → ((𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵)) → (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩)))
8079reximdva 3143 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → (∃𝑒𝑃 (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩)))
8134, 80mpd 15 . . 3 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
826adantr 480 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐺 ∈ TarskiG)
8310adantr 480 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐹𝑃)
848adantr 480 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐷𝑃)
85 simpr 484 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤ (♯‘𝑃))
863, 4, 5, 82, 83, 84, 85tgbtwndiff 28477 . . 3 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → ∃𝑔𝑃 (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔))
8781, 86r19.29a 3138 . 2 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
883, 1tgldimor 28473 . 2 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
8928, 87, 88mpjaodan 960 1 (𝜑 → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  wne 2926  wrex 3054   class class class wbr 5089  cfv 6477  (class class class)co 7341  1c1 10999  cle 11139  2c2 12172  chash 14229  ⟨“cs3 14741  Basecbs 17112  distcds 17162  TarskiGcstrkg 28398  Itvcitv 28404  cgrGccgrg 28481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-er 8617  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-xnn0 12447  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-hash 14230  df-word 14413  df-concat 14470  df-s1 14496  df-s2 14747  df-s3 14748  df-trkgc 28419  df-trkgb 28420  df-trkgcb 28421  df-trkg 28424  df-cgrg 28482
This theorem is referenced by:  tgbtwnxfr  28501  lnext  28538  midexlem  28663
  Copyright terms: Public domain W3C validator