MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrxfr Structured version   Visualization version   GIF version

Theorem tgcgrxfr 26783
Description: A line segment can be divided at the same place as a congruent line segment is divided. Theorem 4.5 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 9-Apr-2019.)
Hypotheses
Ref Expression
tgcgrxfr.p 𝑃 = (Base‘𝐺)
tgcgrxfr.m = (dist‘𝐺)
tgcgrxfr.i 𝐼 = (Itv‘𝐺)
tgcgrxfr.r = (cgrG‘𝐺)
tgcgrxfr.g (𝜑𝐺 ∈ TarskiG)
tgcgrxfr.a (𝜑𝐴𝑃)
tgcgrxfr.b (𝜑𝐵𝑃)
tgcgrxfr.c (𝜑𝐶𝑃)
tgcgrxfr.d (𝜑𝐷𝑃)
tgcgrxfr.f (𝜑𝐹𝑃)
tgcgrxfr.1 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
tgcgrxfr.2 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
Assertion
Ref Expression
tgcgrxfr (𝜑 → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
Distinct variable groups:   𝐴,𝑒   𝐵,𝑒   𝐶,𝑒   𝐷,𝑒   𝑒,𝐹   𝑒,𝐼   𝑃,𝑒   ,𝑒   ,𝑒   𝜑,𝑒
Allowed substitution hint:   𝐺(𝑒)

Proof of Theorem tgcgrxfr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcgrxfr.a . . . 4 (𝜑𝐴𝑃)
21adantr 480 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐴𝑃)
3 tgcgrxfr.p . . . 4 𝑃 = (Base‘𝐺)
4 tgcgrxfr.m . . . 4 = (dist‘𝐺)
5 tgcgrxfr.i . . . 4 𝐼 = (Itv‘𝐺)
6 tgcgrxfr.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76adantr 480 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐺 ∈ TarskiG)
8 tgcgrxfr.d . . . . 5 (𝜑𝐷𝑃)
98adantr 480 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐷𝑃)
10 tgcgrxfr.f . . . . 5 (𝜑𝐹𝑃)
1110adantr 480 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐹𝑃)
12 simpr 484 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (♯‘𝑃) = 1)
133, 4, 5, 7, 2, 9, 11, 12tgldim0itv 26769 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐴 ∈ (𝐷𝐼𝐹))
14 tgcgrxfr.r . . . 4 = (cgrG‘𝐺)
15 tgcgrxfr.b . . . . 5 (𝜑𝐵𝑃)
1615adantr 480 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐵𝑃)
17 tgcgrxfr.c . . . . 5 (𝜑𝐶𝑃)
1817adantr 480 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → 𝐶𝑃)
193, 4, 5, 7, 2, 16, 9, 12, 2tgldim0cgr 26770 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐴 𝐵) = (𝐷 𝐴))
203, 4, 5, 7, 16, 18, 2, 12, 11tgldim0cgr 26770 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐵 𝐶) = (𝐴 𝐹))
213, 4, 5, 7, 18, 2, 11, 12, 9tgldim0cgr 26770 . . . 4 ((𝜑 ∧ (♯‘𝑃) = 1) → (𝐶 𝐴) = (𝐹 𝐷))
223, 4, 14, 7, 2, 16, 18, 9, 2, 11, 19, 20, 21trgcgr 26781 . . 3 ((𝜑 ∧ (♯‘𝑃) = 1) → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐴𝐹”⟩)
23 eleq1 2826 . . . . 5 (𝑒 = 𝐴 → (𝑒 ∈ (𝐷𝐼𝐹) ↔ 𝐴 ∈ (𝐷𝐼𝐹)))
24 s3eq2 14511 . . . . . 6 (𝑒 = 𝐴 → ⟨“𝐷𝑒𝐹”⟩ = ⟨“𝐷𝐴𝐹”⟩)
2524breq2d 5082 . . . . 5 (𝑒 = 𝐴 → (⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐴𝐹”⟩))
2623, 25anbi12d 630 . . . 4 (𝑒 = 𝐴 → ((𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩) ↔ (𝐴 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐴𝐹”⟩)))
2726rspcev 3552 . . 3 ((𝐴𝑃 ∧ (𝐴 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝐴𝐹”⟩)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
282, 13, 22, 27syl12anc 833 . 2 ((𝜑 ∧ (♯‘𝑃) = 1) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
296ad3antrrr 726 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝐺 ∈ TarskiG)
30 simplr 765 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝑔𝑃)
318ad3antrrr 726 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝐷𝑃)
321ad3antrrr 726 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝐴𝑃)
3315ad3antrrr 726 . . . . 5 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → 𝐵𝑃)
343, 4, 5, 29, 30, 31, 32, 33axtgsegcon 26729 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → ∃𝑒𝑃 (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵)))
356ad7antr 734 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐺 ∈ TarskiG)
3630ad2antrr 722 . . . . . . . . . . 11 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝑔𝑃)
3736ad2antrr 722 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑔𝑃)
388ad7antr 734 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷𝑃)
39 simplr 765 . . . . . . . . . . 11 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝑒𝑃)
4039ad2antrr 722 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑒𝑃)
41 simplr 765 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑓𝑃)
42 simpllr 772 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵)))
4342simpld 494 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷 ∈ (𝑔𝐼𝑒))
44 simprl 767 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑒 ∈ (𝑔𝐼𝑓))
453, 4, 5, 35, 37, 38, 40, 41, 43, 44tgbtwnexch3 26759 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑒 ∈ (𝐷𝐼𝑓))
461ad7antr 734 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐴𝑃)
4717ad7antr 734 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐶𝑃)
4810ad7antr 734 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐹𝑃)
49 simp-5r 782 . . . . . . . . . . . . 13 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔))
5049simprd 495 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷𝑔)
5150necomd 2998 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑔𝐷)
523, 4, 5, 35, 37, 38, 40, 41, 43, 44tgbtwnexch 26763 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷 ∈ (𝑔𝐼𝑓))
5349simpld 494 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷 ∈ (𝐹𝐼𝑔))
543, 4, 5, 35, 48, 38, 37, 53tgbtwncom 26753 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐷 ∈ (𝑔𝐼𝐹))
5515ad7antr 734 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐵𝑃)
56 tgcgrxfr.1 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (𝐴𝐼𝐶))
5756ad7antr 734 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝐵 ∈ (𝐴𝐼𝐶))
5842simprd 495 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 𝑒) = (𝐴 𝐵))
59 simprr 769 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝑒 𝑓) = (𝐵 𝐶))
603, 4, 5, 35, 38, 40, 41, 46, 55, 47, 45, 57, 58, 59tgcgrextend 26750 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 𝑓) = (𝐴 𝐶))
61 tgcgrxfr.2 . . . . . . . . . . . . 13 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
6261ad7antr 734 . . . . . . . . . . . 12 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐴 𝐶) = (𝐷 𝐹))
6362eqcomd 2744 . . . . . . . . . . 11 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷 𝐹) = (𝐴 𝐶))
643, 4, 5, 35, 38, 46, 47, 37, 41, 48, 51, 52, 54, 60, 63tgsegconeq 26751 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑓 = 𝐹)
6564oveq2d 7271 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐷𝐼𝑓) = (𝐷𝐼𝐹))
6645, 65eleqtrd 2841 . . . . . . . 8 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → 𝑒 ∈ (𝐷𝐼𝐹))
6758eqcomd 2744 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐴 𝐵) = (𝐷 𝑒))
6864oveq2d 7271 . . . . . . . . . 10 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝑒 𝑓) = (𝑒 𝐹))
6959, 68eqtr3d 2780 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐵 𝐶) = (𝑒 𝐹))
703, 4, 5, 6, 1, 17, 8, 10, 61tgcgrcomlr 26745 . . . . . . . . . 10 (𝜑 → (𝐶 𝐴) = (𝐹 𝐷))
7170ad7antr 734 . . . . . . . . 9 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝐶 𝐴) = (𝐹 𝐷))
723, 4, 14, 35, 46, 55, 47, 38, 40, 48, 67, 69, 71trgcgr 26781 . . . . . . . 8 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩)
7366, 72jca 511 . . . . . . 7 ((((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) ∧ 𝑓𝑃) ∧ (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶))) → (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
7429ad2antrr 722 . . . . . . . 8 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝐺 ∈ TarskiG)
7533ad2antrr 722 . . . . . . . 8 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝐵𝑃)
7617ad5antr 730 . . . . . . . 8 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → 𝐶𝑃)
773, 4, 5, 74, 36, 39, 75, 76axtgsegcon 26729 . . . . . . 7 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → ∃𝑓𝑃 (𝑒 ∈ (𝑔𝐼𝑓) ∧ (𝑒 𝑓) = (𝐵 𝐶)))
7873, 77r19.29a 3217 . . . . . 6 ((((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) ∧ (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵))) → (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
7978ex 412 . . . . 5 (((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) ∧ 𝑒𝑃) → ((𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵)) → (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩)))
8079reximdva 3202 . . . 4 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → (∃𝑒𝑃 (𝐷 ∈ (𝑔𝐼𝑒) ∧ (𝐷 𝑒) = (𝐴 𝐵)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩)))
8134, 80mpd 15 . . 3 ((((𝜑 ∧ 2 ≤ (♯‘𝑃)) ∧ 𝑔𝑃) ∧ (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
826adantr 480 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐺 ∈ TarskiG)
8310adantr 480 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐹𝑃)
848adantr 480 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 𝐷𝑃)
85 simpr 484 . . . 4 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → 2 ≤ (♯‘𝑃))
863, 4, 5, 82, 83, 84, 85tgbtwndiff 26771 . . 3 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → ∃𝑔𝑃 (𝐷 ∈ (𝐹𝐼𝑔) ∧ 𝐷𝑔))
8781, 86r19.29a 3217 . 2 ((𝜑 ∧ 2 ≤ (♯‘𝑃)) → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
883, 1tgldimor 26767 . 2 (𝜑 → ((♯‘𝑃) = 1 ∨ 2 ≤ (♯‘𝑃)))
8928, 87, 88mpjaodan 955 1 (𝜑 → ∃𝑒𝑃 (𝑒 ∈ (𝐷𝐼𝐹) ∧ ⟨“𝐴𝐵𝐶”⟩ ⟨“𝐷𝑒𝐹”⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  1c1 10803  cle 10941  2c2 11958  chash 13972  ⟨“cs3 14483  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699  cgrGccgrg 26775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718  df-cgrg 26776
This theorem is referenced by:  tgbtwnxfr  26795  lnext  26832  midexlem  26957
  Copyright terms: Public domain W3C validator