Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altxpexg Structured version   Visualization version   GIF version

Theorem altxpexg 33443
Description: The alternate Cartesian product of two sets is a set. (Contributed by Scott Fenton, 24-Mar-2012.)
Assertion
Ref Expression
altxpexg ((𝐴𝑉𝐵𝑊) → (𝐴 ×× 𝐵) ∈ V)

Proof of Theorem altxpexg
StepHypRef Expression
1 altxpsspw 33442 . 2 (𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵)
2 pwexg 5282 . . . 4 (𝐵𝑊 → 𝒫 𝐵 ∈ V)
3 unexg 7475 . . . 4 ((𝐴𝑉 ∧ 𝒫 𝐵 ∈ V) → (𝐴 ∪ 𝒫 𝐵) ∈ V)
42, 3sylan2 594 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴 ∪ 𝒫 𝐵) ∈ V)
5 pwexg 5282 . . 3 ((𝐴 ∪ 𝒫 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V)
6 pwexg 5282 . . 3 (𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V)
74, 5, 63syl 18 . 2 ((𝐴𝑉𝐵𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V)
8 ssexg 5230 . 2 (((𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V) → (𝐴 ×× 𝐵) ∈ V)
91, 7, 8sylancr 589 1 ((𝐴𝑉𝐵𝑊) → (𝐴 ×× 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2113  Vcvv 3497  cun 3937  wss 3939  𝒫 cpw 4542   ×× caltxp 33422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-pw 4544  df-sn 4571  df-pr 4573  df-uni 4842  df-altop 33423  df-altxp 33424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator