Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > altxpexg | Structured version Visualization version GIF version |
Description: The alternate Cartesian product of two sets is a set. (Contributed by Scott Fenton, 24-Mar-2012.) |
Ref | Expression |
---|---|
altxpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ×× 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | altxpsspw 34279 | . 2 ⊢ (𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) | |
2 | pwexg 5301 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → 𝒫 𝐵 ∈ V) | |
3 | unexg 7599 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝒫 𝐵 ∈ V) → (𝐴 ∪ 𝒫 𝐵) ∈ V) | |
4 | 2, 3 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝒫 𝐵) ∈ V) |
5 | pwexg 5301 | . . 3 ⊢ ((𝐴 ∪ 𝒫 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V) | |
6 | pwexg 5301 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V) | |
7 | 4, 5, 6 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V) |
8 | ssexg 5247 | . 2 ⊢ (((𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V) → (𝐴 ×× 𝐵) ∈ V) | |
9 | 1, 7, 8 | sylancr 587 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ×× 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 ⊆ wss 3887 𝒫 cpw 4533 ×× caltxp 34259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-sn 4562 df-pr 4564 df-uni 4840 df-altop 34260 df-altxp 34261 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |