Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altxpexg Structured version   Visualization version   GIF version

Theorem altxpexg 35942
Description: The alternate Cartesian product of two sets is a set. (Contributed by Scott Fenton, 24-Mar-2012.)
Assertion
Ref Expression
altxpexg ((𝐴𝑉𝐵𝑊) → (𝐴 ×× 𝐵) ∈ V)

Proof of Theorem altxpexg
StepHypRef Expression
1 altxpsspw 35941 . 2 (𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵)
2 pwexg 5396 . . . 4 (𝐵𝑊 → 𝒫 𝐵 ∈ V)
3 unexg 7778 . . . 4 ((𝐴𝑉 ∧ 𝒫 𝐵 ∈ V) → (𝐴 ∪ 𝒫 𝐵) ∈ V)
42, 3sylan2 592 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴 ∪ 𝒫 𝐵) ∈ V)
5 pwexg 5396 . . 3 ((𝐴 ∪ 𝒫 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V)
6 pwexg 5396 . . 3 (𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V)
74, 5, 63syl 18 . 2 ((𝐴𝑉𝐵𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V)
8 ssexg 5341 . 2 (((𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V) → (𝐴 ×× 𝐵) ∈ V)
91, 7, 8sylancr 586 1 ((𝐴𝑉𝐵𝑊) → (𝐴 ×× 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3488  cun 3974  wss 3976  𝒫 cpw 4622   ×× caltxp 35921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-pw 4624  df-sn 4649  df-pr 4651  df-uni 4932  df-altop 35922  df-altxp 35923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator