Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > altxpexg | Structured version Visualization version GIF version |
Description: The alternate Cartesian product of two sets is a set. (Contributed by Scott Fenton, 24-Mar-2012.) |
Ref | Expression |
---|---|
altxpexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ×× 𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | altxpsspw 34206 | . 2 ⊢ (𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) | |
2 | pwexg 5296 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → 𝒫 𝐵 ∈ V) | |
3 | unexg 7577 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝒫 𝐵 ∈ V) → (𝐴 ∪ 𝒫 𝐵) ∈ V) | |
4 | 2, 3 | sylan2 592 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝒫 𝐵) ∈ V) |
5 | pwexg 5296 | . . 3 ⊢ ((𝐴 ∪ 𝒫 𝐵) ∈ V → 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V) | |
6 | pwexg 5296 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V → 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V) | |
7 | 4, 5, 6 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V) |
8 | ssexg 5242 | . 2 ⊢ (((𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∧ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) ∈ V) → (𝐴 ×× 𝐵) ∈ V) | |
9 | 1, 7, 8 | sylancr 586 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ×× 𝐵) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 ⊆ wss 3883 𝒫 cpw 4530 ×× caltxp 34186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-sn 4559 df-pr 4561 df-uni 4837 df-altop 34187 df-altxp 34188 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |