Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atl0dm Structured version   Visualization version   GIF version

Theorem atl0dm 39288
Description: Condition necessary for zero element to exist. (Contributed by NM, 14-Sep-2018.)
Hypotheses
Ref Expression
atl01dm.b 𝐵 = (Base‘𝐾)
atl01dm.u 𝑈 = (lub‘𝐾)
atl01dm.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
atl0dm (𝐾 ∈ AtLat → 𝐵 ∈ dom 𝐺)

Proof of Theorem atl0dm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 atl01dm.b . . 3 𝐵 = (Base‘𝐾)
2 atl01dm.g . . 3 𝐺 = (glb‘𝐾)
3 eqid 2729 . . 3 (le‘𝐾) = (le‘𝐾)
4 eqid 2729 . . 3 (0.‘𝐾) = (0.‘𝐾)
5 eqid 2729 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
61, 2, 3, 4, 5isatl 39285 . 2 (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥 ≠ (0.‘𝐾) → ∃𝑦 ∈ (Atoms‘𝐾)𝑦(le‘𝐾)𝑥)))
76simp2bi 1146 1 (𝐾 ∈ AtLat → 𝐵 ∈ dom 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053   class class class wbr 5102  dom cdm 5631  cfv 6499  Basecbs 17155  lecple 17203  lubclub 18250  glbcglb 18251  0.cp0 18362  Latclat 18372  Atomscatm 39249  AtLatcal 39250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-dm 5641  df-iota 6452  df-fv 6507  df-atl 39284
This theorem is referenced by:  atl0cl  39289  atl0le  39290
  Copyright terms: Public domain W3C validator