Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atl0dm Structured version   Visualization version   GIF version

Theorem atl0dm 39258
Description: Condition necessary for zero element to exist. (Contributed by NM, 14-Sep-2018.)
Hypotheses
Ref Expression
atl01dm.b 𝐵 = (Base‘𝐾)
atl01dm.u 𝑈 = (lub‘𝐾)
atl01dm.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
atl0dm (𝐾 ∈ AtLat → 𝐵 ∈ dom 𝐺)

Proof of Theorem atl0dm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 atl01dm.b . . 3 𝐵 = (Base‘𝐾)
2 atl01dm.g . . 3 𝐺 = (glb‘𝐾)
3 eqid 2740 . . 3 (le‘𝐾) = (le‘𝐾)
4 eqid 2740 . . 3 (0.‘𝐾) = (0.‘𝐾)
5 eqid 2740 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
61, 2, 3, 4, 5isatl 39255 . 2 (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥𝐵 (𝑥 ≠ (0.‘𝐾) → ∃𝑦 ∈ (Atoms‘𝐾)𝑦(le‘𝐾)𝑥)))
76simp2bi 1146 1 (𝐾 ∈ AtLat → 𝐵 ∈ dom 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076   class class class wbr 5166  dom cdm 5700  cfv 6573  Basecbs 17258  lecple 17318  lubclub 18379  glbcglb 18380  0.cp0 18493  Latclat 18501  Atomscatm 39219  AtLatcal 39220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-dm 5710  df-iota 6525  df-fv 6581  df-atl 39254
This theorem is referenced by:  atl0cl  39259  atl0le  39260
  Copyright terms: Public domain W3C validator