Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atl0dm | Structured version Visualization version GIF version |
Description: Condition necessary for zero element to exist. (Contributed by NM, 14-Sep-2018.) |
Ref | Expression |
---|---|
atl01dm.b | ⊢ 𝐵 = (Base‘𝐾) |
atl01dm.u | ⊢ 𝑈 = (lub‘𝐾) |
atl01dm.g | ⊢ 𝐺 = (glb‘𝐾) |
Ref | Expression |
---|---|
atl0dm | ⊢ (𝐾 ∈ AtLat → 𝐵 ∈ dom 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atl01dm.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | atl01dm.g | . . 3 ⊢ 𝐺 = (glb‘𝐾) | |
3 | eqid 2738 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
4 | eqid 2738 | . . 3 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
5 | eqid 2738 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
6 | 1, 2, 3, 4, 5 | isatl 37240 | . 2 ⊢ (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≠ (0.‘𝐾) → ∃𝑦 ∈ (Atoms‘𝐾)𝑦(le‘𝐾)𝑥))) |
7 | 6 | simp2bi 1144 | 1 ⊢ (𝐾 ∈ AtLat → 𝐵 ∈ dom 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 class class class wbr 5070 dom cdm 5580 ‘cfv 6418 Basecbs 16840 lecple 16895 lubclub 17942 glbcglb 17943 0.cp0 18056 Latclat 18064 Atomscatm 37204 AtLatcal 37205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-dm 5590 df-iota 6376 df-fv 6426 df-atl 37239 |
This theorem is referenced by: atl0cl 37244 atl0le 37245 |
Copyright terms: Public domain | W3C validator |