Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atl0dm Structured version   Visualization version   GIF version

Theorem atl0dm 38167
Description: Condition necessary for zero element to exist. (Contributed by NM, 14-Sep-2018.)
Hypotheses
Ref Expression
atl01dm.b 𝐡 = (Baseβ€˜πΎ)
atl01dm.u π‘ˆ = (lubβ€˜πΎ)
atl01dm.g 𝐺 = (glbβ€˜πΎ)
Assertion
Ref Expression
atl0dm (𝐾 ∈ AtLat β†’ 𝐡 ∈ dom 𝐺)

Proof of Theorem atl0dm
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 atl01dm.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 atl01dm.g . . 3 𝐺 = (glbβ€˜πΎ)
3 eqid 2732 . . 3 (leβ€˜πΎ) = (leβ€˜πΎ)
4 eqid 2732 . . 3 (0.β€˜πΎ) = (0.β€˜πΎ)
5 eqid 2732 . . 3 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
61, 2, 3, 4, 5isatl 38164 . 2 (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐡 ∈ dom 𝐺 ∧ βˆ€π‘₯ ∈ 𝐡 (π‘₯ β‰  (0.β€˜πΎ) β†’ βˆƒπ‘¦ ∈ (Atomsβ€˜πΎ)𝑦(leβ€˜πΎ)π‘₯)))
76simp2bi 1146 1 (𝐾 ∈ AtLat β†’ 𝐡 ∈ dom 𝐺)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070   class class class wbr 5148  dom cdm 5676  β€˜cfv 6543  Basecbs 17143  lecple 17203  lubclub 18261  glbcglb 18262  0.cp0 18375  Latclat 18383  Atomscatm 38128  AtLatcal 38129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-dm 5686  df-iota 6495  df-fv 6551  df-atl 38163
This theorem is referenced by:  atl0cl  38168  atl0le  38169
  Copyright terms: Public domain W3C validator