![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atl0dm | Structured version Visualization version GIF version |
Description: Condition necessary for zero element to exist. (Contributed by NM, 14-Sep-2018.) |
Ref | Expression |
---|---|
atl01dm.b | β’ π΅ = (BaseβπΎ) |
atl01dm.u | β’ π = (lubβπΎ) |
atl01dm.g | β’ πΊ = (glbβπΎ) |
Ref | Expression |
---|---|
atl0dm | β’ (πΎ β AtLat β π΅ β dom πΊ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atl01dm.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | atl01dm.g | . . 3 β’ πΊ = (glbβπΎ) | |
3 | eqid 2732 | . . 3 β’ (leβπΎ) = (leβπΎ) | |
4 | eqid 2732 | . . 3 β’ (0.βπΎ) = (0.βπΎ) | |
5 | eqid 2732 | . . 3 β’ (AtomsβπΎ) = (AtomsβπΎ) | |
6 | 1, 2, 3, 4, 5 | isatl 38164 | . 2 β’ (πΎ β AtLat β (πΎ β Lat β§ π΅ β dom πΊ β§ βπ₯ β π΅ (π₯ β (0.βπΎ) β βπ¦ β (AtomsβπΎ)π¦(leβπΎ)π₯))) |
7 | 6 | simp2bi 1146 | 1 β’ (πΎ β AtLat β π΅ β dom πΊ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 βwrex 3070 class class class wbr 5148 dom cdm 5676 βcfv 6543 Basecbs 17143 lecple 17203 lubclub 18261 glbcglb 18262 0.cp0 18375 Latclat 18383 Atomscatm 38128 AtLatcal 38129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-dm 5686 df-iota 6495 df-fv 6551 df-atl 38163 |
This theorem is referenced by: atl0cl 38168 atl0le 38169 |
Copyright terms: Public domain | W3C validator |