| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atl0dm | Structured version Visualization version GIF version | ||
| Description: Condition necessary for zero element to exist. (Contributed by NM, 14-Sep-2018.) |
| Ref | Expression |
|---|---|
| atl01dm.b | ⊢ 𝐵 = (Base‘𝐾) |
| atl01dm.u | ⊢ 𝑈 = (lub‘𝐾) |
| atl01dm.g | ⊢ 𝐺 = (glb‘𝐾) |
| Ref | Expression |
|---|---|
| atl0dm | ⊢ (𝐾 ∈ AtLat → 𝐵 ∈ dom 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atl01dm.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | atl01dm.g | . . 3 ⊢ 𝐺 = (glb‘𝐾) | |
| 3 | eqid 2731 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 4 | eqid 2731 | . . 3 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 5 | eqid 2731 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | isatl 39408 | . 2 ⊢ (𝐾 ∈ AtLat ↔ (𝐾 ∈ Lat ∧ 𝐵 ∈ dom 𝐺 ∧ ∀𝑥 ∈ 𝐵 (𝑥 ≠ (0.‘𝐾) → ∃𝑦 ∈ (Atoms‘𝐾)𝑦(le‘𝐾)𝑥))) |
| 7 | 6 | simp2bi 1146 | 1 ⊢ (𝐾 ∈ AtLat → 𝐵 ∈ dom 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 class class class wbr 5089 dom cdm 5614 ‘cfv 6481 Basecbs 17120 lecple 17168 lubclub 18215 glbcglb 18216 0.cp0 18327 Latclat 18337 Atomscatm 39372 AtLatcal 39373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-dm 5624 df-iota 6437 df-fv 6489 df-atl 39407 |
| This theorem is referenced by: atl0cl 39412 atl0le 39413 |
| Copyright terms: Public domain | W3C validator |