Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atl0cl Structured version   Visualization version   GIF version

Theorem atl0cl 37054
Description: An atomic lattice has a zero element. We can use this in place of op0cl 36935 for lattices without orthocomplements. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atl0cl.b 𝐵 = (Base‘𝐾)
atl0cl.z 0 = (0.‘𝐾)
Assertion
Ref Expression
atl0cl (𝐾 ∈ AtLat → 0𝐵)

Proof of Theorem atl0cl
StepHypRef Expression
1 atl0cl.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2737 . . 3 (glb‘𝐾) = (glb‘𝐾)
3 atl0cl.z . . 3 0 = (0.‘𝐾)
41, 2, 3p0val 17933 . 2 (𝐾 ∈ AtLat → 0 = ((glb‘𝐾)‘𝐵))
5 id 22 . . 3 (𝐾 ∈ AtLat → 𝐾 ∈ AtLat)
6 eqid 2737 . . . 4 (lub‘𝐾) = (lub‘𝐾)
71, 6, 2atl0dm 37053 . . 3 (𝐾 ∈ AtLat → 𝐵 ∈ dom (glb‘𝐾))
81, 2, 5, 7glbcl 17876 . 2 (𝐾 ∈ AtLat → ((glb‘𝐾)‘𝐵) ∈ 𝐵)
94, 8eqeltrd 2838 1 (𝐾 ∈ AtLat → 0𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  cfv 6380  Basecbs 16760  lubclub 17816  glbcglb 17817  0.cp0 17929  AtLatcal 37015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-glb 17853  df-p0 17931  df-atl 37049
This theorem is referenced by:  atlle0  37056  atlltn0  37057  isat3  37058  atnle0  37060  atlen0  37061  atcmp  37062  atcvreq0  37065  pmap0  37516  dia0  38803  dih0cnv  39034
  Copyright terms: Public domain W3C validator