Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atl0cl Structured version   Visualization version   GIF version

Theorem atl0cl 38168
Description: An atomic lattice has a zero element. We can use this in place of op0cl 38049 for lattices without orthocomplements. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atl0cl.b 𝐵 = (Base‘𝐾)
atl0cl.z 0 = (0.‘𝐾)
Assertion
Ref Expression
atl0cl (𝐾 ∈ AtLat → 0𝐵)

Proof of Theorem atl0cl
StepHypRef Expression
1 atl0cl.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2732 . . 3 (glb‘𝐾) = (glb‘𝐾)
3 atl0cl.z . . 3 0 = (0.‘𝐾)
41, 2, 3p0val 18379 . 2 (𝐾 ∈ AtLat → 0 = ((glb‘𝐾)‘𝐵))
5 id 22 . . 3 (𝐾 ∈ AtLat → 𝐾 ∈ AtLat)
6 eqid 2732 . . . 4 (lub‘𝐾) = (lub‘𝐾)
71, 6, 2atl0dm 38167 . . 3 (𝐾 ∈ AtLat → 𝐵 ∈ dom (glb‘𝐾))
81, 2, 5, 7glbcl 18322 . 2 (𝐾 ∈ AtLat → ((glb‘𝐾)‘𝐵) ∈ 𝐵)
94, 8eqeltrd 2833 1 (𝐾 ∈ AtLat → 0𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cfv 6543  Basecbs 17143  lubclub 18261  glbcglb 18262  0.cp0 18375  AtLatcal 38129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-glb 18299  df-p0 18377  df-atl 38163
This theorem is referenced by:  atlle0  38170  atlltn0  38171  isat3  38172  atnle0  38174  atlen0  38175  atcmp  38176  atcvreq0  38179  pmap0  38631  dia0  39918  dih0cnv  40149
  Copyright terms: Public domain W3C validator