Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atl0cl Structured version   Visualization version   GIF version

Theorem atl0cl 38684
Description: An atomic lattice has a zero element. We can use this in place of op0cl 38565 for lattices without orthocomplements. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atl0cl.b 𝐵 = (Base‘𝐾)
atl0cl.z 0 = (0.‘𝐾)
Assertion
Ref Expression
atl0cl (𝐾 ∈ AtLat → 0𝐵)

Proof of Theorem atl0cl
StepHypRef Expression
1 atl0cl.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2726 . . 3 (glb‘𝐾) = (glb‘𝐾)
3 atl0cl.z . . 3 0 = (0.‘𝐾)
41, 2, 3p0val 18390 . 2 (𝐾 ∈ AtLat → 0 = ((glb‘𝐾)‘𝐵))
5 id 22 . . 3 (𝐾 ∈ AtLat → 𝐾 ∈ AtLat)
6 eqid 2726 . . . 4 (lub‘𝐾) = (lub‘𝐾)
71, 6, 2atl0dm 38683 . . 3 (𝐾 ∈ AtLat → 𝐵 ∈ dom (glb‘𝐾))
81, 2, 5, 7glbcl 18333 . 2 (𝐾 ∈ AtLat → ((glb‘𝐾)‘𝐵) ∈ 𝐵)
94, 8eqeltrd 2827 1 (𝐾 ∈ AtLat → 0𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cfv 6536  Basecbs 17151  lubclub 18272  glbcglb 18273  0.cp0 18386  AtLatcal 38645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-glb 18310  df-p0 18388  df-atl 38679
This theorem is referenced by:  atlle0  38686  atlltn0  38687  isat3  38688  atnle0  38690  atlen0  38691  atcmp  38692  atcvreq0  38695  pmap0  39147  dia0  40434  dih0cnv  40665
  Copyright terms: Public domain W3C validator