| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atl0cl | Structured version Visualization version GIF version | ||
| Description: An atomic lattice has a zero element. We can use this in place of op0cl 39177 for lattices without orthocomplements. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| atl0cl.b | ⊢ 𝐵 = (Base‘𝐾) |
| atl0cl.z | ⊢ 0 = (0.‘𝐾) |
| Ref | Expression |
|---|---|
| atl0cl | ⊢ (𝐾 ∈ AtLat → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atl0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 3 | atl0cl.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 4 | 1, 2, 3 | p0val 18386 | . 2 ⊢ (𝐾 ∈ AtLat → 0 = ((glb‘𝐾)‘𝐵)) |
| 5 | id 22 | . . 3 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ AtLat) | |
| 6 | eqid 2729 | . . . 4 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 7 | 1, 6, 2 | atl0dm 39295 | . . 3 ⊢ (𝐾 ∈ AtLat → 𝐵 ∈ dom (glb‘𝐾)) |
| 8 | 1, 2, 5, 7 | glbcl 18329 | . 2 ⊢ (𝐾 ∈ AtLat → ((glb‘𝐾)‘𝐵) ∈ 𝐵) |
| 9 | 4, 8 | eqeltrd 2828 | 1 ⊢ (𝐾 ∈ AtLat → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 Basecbs 17179 lubclub 18270 glbcglb 18271 0.cp0 18382 AtLatcal 39257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-glb 18306 df-p0 18384 df-atl 39291 |
| This theorem is referenced by: atlle0 39298 atlltn0 39299 isat3 39300 atnle0 39302 atlen0 39303 atcmp 39304 atcvreq0 39307 pmap0 39759 dia0 41046 dih0cnv 41277 |
| Copyright terms: Public domain | W3C validator |