Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atl0le Structured version   Visualization version   GIF version

Theorem atl0le 37318
Description: Orthoposet zero is less than or equal to any element. (ch0le 29803 analog.) (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
atl0le.b 𝐵 = (Base‘𝐾)
atl0le.l = (le‘𝐾)
atl0le.z 0 = (0.‘𝐾)
Assertion
Ref Expression
atl0le ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 0 𝑋)

Proof of Theorem atl0le
StepHypRef Expression
1 atl0le.b . 2 𝐵 = (Base‘𝐾)
2 eqid 2738 . 2 (glb‘𝐾) = (glb‘𝐾)
3 atl0le.l . 2 = (le‘𝐾)
4 atl0le.z . 2 0 = (0.‘𝐾)
5 simpl 483 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 𝐾 ∈ AtLat)
6 simpr 485 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 𝑋𝐵)
7 eqid 2738 . . . 4 (lub‘𝐾) = (lub‘𝐾)
81, 7, 2atl0dm 37316 . . 3 (𝐾 ∈ AtLat → 𝐵 ∈ dom (glb‘𝐾))
98adantr 481 . 2 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 𝐵 ∈ dom (glb‘𝐾))
101, 2, 3, 4, 5, 6, 9p0le 18147 1 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → 0 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  dom cdm 5589  cfv 6433  Basecbs 16912  lecple 16969  lubclub 18027  glbcglb 18028  0.cp0 18141  AtLatcal 37278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-glb 18065  df-p0 18143  df-atl 37312
This theorem is referenced by:  atlle0  37319  atlltn0  37320  atcvreq0  37328  trlval4  38202  dian0  39053  dia0  39066  dihmeetlem4preN  39320
  Copyright terms: Public domain W3C validator