Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atl0le | Structured version Visualization version GIF version |
Description: Orthoposet zero is less than or equal to any element. (ch0le 29803 analog.) (Contributed by NM, 12-Oct-2011.) |
Ref | Expression |
---|---|
atl0le.b | ⊢ 𝐵 = (Base‘𝐾) |
atl0le.l | ⊢ ≤ = (le‘𝐾) |
atl0le.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
atl0le | ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atl0le.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2738 | . 2 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
3 | atl0le.l | . 2 ⊢ ≤ = (le‘𝐾) | |
4 | atl0le.z | . 2 ⊢ 0 = (0.‘𝐾) | |
5 | simpl 483 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ AtLat) | |
6 | simpr 485 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
7 | eqid 2738 | . . . 4 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
8 | 1, 7, 2 | atl0dm 37316 | . . 3 ⊢ (𝐾 ∈ AtLat → 𝐵 ∈ dom (glb‘𝐾)) |
9 | 8 | adantr 481 | . 2 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 𝐵 ∈ dom (glb‘𝐾)) |
10 | 1, 2, 3, 4, 5, 6, 9 | p0le 18147 | 1 ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 Basecbs 16912 lecple 16969 lubclub 18027 glbcglb 18028 0.cp0 18141 AtLatcal 37278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-glb 18065 df-p0 18143 df-atl 37312 |
This theorem is referenced by: atlle0 37319 atlltn0 37320 atcvreq0 37328 trlval4 38202 dian0 39053 dia0 39066 dihmeetlem4preN 39320 |
Copyright terms: Public domain | W3C validator |