| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atlpos | Structured version Visualization version GIF version | ||
| Description: An atomic lattice is a poset. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| atlpos | ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atllat 39347 | . 2 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | |
| 2 | latpos 18344 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Posetcpo 18213 Latclat 18337 AtLatcal 39311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-dm 5624 df-iota 6437 df-fv 6489 df-lat 18338 df-atl 39345 |
| This theorem is referenced by: atlle0 39352 atnle0 39356 atlen0 39357 atcmp 39358 atcvreq0 39361 atlatmstc 39366 atlatle 39367 atlrelat1 39368 |
| Copyright terms: Public domain | W3C validator |