Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlpos Structured version   Visualization version   GIF version

Theorem atlpos 37809
Description: An atomic lattice is a poset. (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
atlpos (𝐾 ∈ AtLat → 𝐾 ∈ Poset)

Proof of Theorem atlpos
StepHypRef Expression
1 atllat 37808 . 2 (𝐾 ∈ AtLat → 𝐾 ∈ Lat)
2 latpos 18332 . 2 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
31, 2syl 17 1 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Posetcpo 18201  Latclat 18325  AtLatcal 37772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-xp 5640  df-dm 5644  df-iota 6449  df-fv 6505  df-lat 18326  df-atl 37806
This theorem is referenced by:  atlle0  37813  atnle0  37817  atlen0  37818  atcmp  37819  atcvreq0  37822  atlatmstc  37827  atlatle  37828  atlrelat1  37829
  Copyright terms: Public domain W3C validator