Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlpos Structured version   Visualization version   GIF version

Theorem atlpos 35455
Description: An atomic lattice is a poset. (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
atlpos (𝐾 ∈ AtLat → 𝐾 ∈ Poset)

Proof of Theorem atlpos
StepHypRef Expression
1 atllat 35454 . 2 (𝐾 ∈ AtLat → 𝐾 ∈ Lat)
2 latpos 17436 . 2 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
31, 2syl 17 1 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Posetcpo 17326  Latclat 17431  AtLatcal 35418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-xp 5361  df-dm 5365  df-iota 6099  df-fv 6143  df-lat 17432  df-atl 35452
This theorem is referenced by:  atlle0  35459  atnle0  35463  atlen0  35464  atcmp  35465  atcvreq0  35468  atlatmstc  35473  atlatle  35474  atlrelat1  35475
  Copyright terms: Public domain W3C validator