| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atlpos | Structured version Visualization version GIF version | ||
| Description: An atomic lattice is a poset. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| atlpos | ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atllat 39279 | . 2 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Lat) | |
| 2 | latpos 18344 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Posetcpo 18213 Latclat 18337 AtLatcal 39243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-dm 5629 df-iota 6438 df-fv 6490 df-lat 18338 df-atl 39277 |
| This theorem is referenced by: atlle0 39284 atnle0 39288 atlen0 39289 atcmp 39290 atcvreq0 39293 atlatmstc 39298 atlatle 39299 atlrelat1 39300 |
| Copyright terms: Public domain | W3C validator |