Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlpos Structured version   Visualization version   GIF version

Theorem atlpos 38682
Description: An atomic lattice is a poset. (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
atlpos (𝐾 ∈ AtLat → 𝐾 ∈ Poset)

Proof of Theorem atlpos
StepHypRef Expression
1 atllat 38681 . 2 (𝐾 ∈ AtLat → 𝐾 ∈ Lat)
2 latpos 18401 . 2 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
31, 2syl 17 1 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  Posetcpo 18270  Latclat 18394  AtLatcal 38645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-xp 5675  df-dm 5679  df-iota 6488  df-fv 6544  df-lat 18395  df-atl 38679
This theorem is referenced by:  atlle0  38686  atnle0  38690  atlen0  38691  atcmp  38692  atcvreq0  38695  atlatmstc  38700  atlatle  38701  atlrelat1  38702
  Copyright terms: Public domain W3C validator