Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snglss | Structured version Visualization version GIF version |
Description: The singletonization of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-snglss | ⊢ sngl 𝐴 ⊆ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-elsngl 35085 | . . . . 5 ⊢ (𝑥 ∈ sngl 𝐴 ↔ ∃𝑦 ∈ 𝐴 𝑥 = {𝑦}) | |
2 | df-rex 3069 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐴 𝑥 = {𝑦} ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑥 = {𝑦})) | |
3 | snssi 4738 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → {𝑦} ⊆ 𝐴) | |
4 | sseq1 3942 | . . . . . . . . 9 ⊢ (𝑥 = {𝑦} → (𝑥 ⊆ 𝐴 ↔ {𝑦} ⊆ 𝐴)) | |
5 | 4 | biimparc 479 | . . . . . . . 8 ⊢ (({𝑦} ⊆ 𝐴 ∧ 𝑥 = {𝑦}) → 𝑥 ⊆ 𝐴) |
6 | 3, 5 | sylan 579 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 = {𝑦}) → 𝑥 ⊆ 𝐴) |
7 | 6 | eximi 1838 | . . . . . 6 ⊢ (∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑥 = {𝑦}) → ∃𝑦 𝑥 ⊆ 𝐴) |
8 | 2, 7 | sylbi 216 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐴 𝑥 = {𝑦} → ∃𝑦 𝑥 ⊆ 𝐴) |
9 | 1, 8 | sylbi 216 | . . . 4 ⊢ (𝑥 ∈ sngl 𝐴 → ∃𝑦 𝑥 ⊆ 𝐴) |
10 | ax5e 1916 | . . . 4 ⊢ (∃𝑦 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐴) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝑥 ∈ sngl 𝐴 → 𝑥 ⊆ 𝐴) |
12 | velpw 4535 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
13 | 11, 12 | sylibr 233 | . 2 ⊢ (𝑥 ∈ sngl 𝐴 → 𝑥 ∈ 𝒫 𝐴) |
14 | 13 | ssriv 3921 | 1 ⊢ sngl 𝐴 ⊆ 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 𝒫 cpw 4530 {csn 4558 sngl bj-csngl 35082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rex 3069 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-sn 4559 df-pr 4561 df-bj-sngl 35083 |
This theorem is referenced by: bj-snglex 35090 bj-tagss 35097 |
Copyright terms: Public domain | W3C validator |