Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snglss Structured version   Visualization version   GIF version

Theorem bj-snglss 35087
Description: The singletonization of a class is included in its powerclass. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-snglss sngl 𝐴 ⊆ 𝒫 𝐴

Proof of Theorem bj-snglss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-elsngl 35085 . . . . 5 (𝑥 ∈ sngl 𝐴 ↔ ∃𝑦𝐴 𝑥 = {𝑦})
2 df-rex 3069 . . . . . 6 (∃𝑦𝐴 𝑥 = {𝑦} ↔ ∃𝑦(𝑦𝐴𝑥 = {𝑦}))
3 snssi 4738 . . . . . . . 8 (𝑦𝐴 → {𝑦} ⊆ 𝐴)
4 sseq1 3942 . . . . . . . . 9 (𝑥 = {𝑦} → (𝑥𝐴 ↔ {𝑦} ⊆ 𝐴))
54biimparc 479 . . . . . . . 8 (({𝑦} ⊆ 𝐴𝑥 = {𝑦}) → 𝑥𝐴)
63, 5sylan 579 . . . . . . 7 ((𝑦𝐴𝑥 = {𝑦}) → 𝑥𝐴)
76eximi 1838 . . . . . 6 (∃𝑦(𝑦𝐴𝑥 = {𝑦}) → ∃𝑦 𝑥𝐴)
82, 7sylbi 216 . . . . 5 (∃𝑦𝐴 𝑥 = {𝑦} → ∃𝑦 𝑥𝐴)
91, 8sylbi 216 . . . 4 (𝑥 ∈ sngl 𝐴 → ∃𝑦 𝑥𝐴)
10 ax5e 1916 . . . 4 (∃𝑦 𝑥𝐴𝑥𝐴)
119, 10syl 17 . . 3 (𝑥 ∈ sngl 𝐴𝑥𝐴)
12 velpw 4535 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
1311, 12sylibr 233 . 2 (𝑥 ∈ sngl 𝐴𝑥 ∈ 𝒫 𝐴)
1413ssriv 3921 1 sngl 𝐴 ⊆ 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wex 1783  wcel 2108  wrex 3064  wss 3883  𝒫 cpw 4530  {csn 4558  sngl bj-csngl 35082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rex 3069  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-pw 4532  df-sn 4559  df-pr 4561  df-bj-sngl 35083
This theorem is referenced by:  bj-snglex  35090  bj-tagss  35097
  Copyright terms: Public domain W3C validator