Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  natlocalincr Structured version   Visualization version   GIF version

Theorem natlocalincr 46905
Description: Global monotonicity on half-open range implies local monotonicity. Inference form. (Contributed by Ender Ting, 22-Nov-2024.)
Hypothesis
Ref Expression
natlocalincr.1 𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))
Assertion
Ref Expression
natlocalincr 𝑘 ∈ (0..^𝑇)(𝐵𝑘) < (𝐵‘(𝑘 + 1))
Distinct variable groups:   𝑡,𝐵   𝑡,𝑇   𝑡,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑇(𝑘)

Proof of Theorem natlocalincr
StepHypRef Expression
1 ovex 7438 . . . . 5 (𝑘 + 1) ∈ V
21isseti 3477 . . . 4 𝑡 𝑡 = (𝑘 + 1)
3 natlocalincr.1 . . . . . . . 8 𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))
4 rsp 3230 . . . . . . . . 9 (∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡)) → (𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))))
54ralimi 3073 . . . . . . . 8 (∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡)) → ∀𝑘 ∈ (0..^𝑇)(𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))))
6 1z 12622 . . . . . . . . . . . . 13 1 ∈ ℤ
7 fzoaddel 13733 . . . . . . . . . . . . 13 ((𝑘 ∈ (0..^𝑇) ∧ 1 ∈ ℤ) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1)))
86, 7mpan2 691 . . . . . . . . . . . 12 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1)))
9 0p1e1 12362 . . . . . . . . . . . . 13 (0 + 1) = 1
109oveq1i 7415 . . . . . . . . . . . 12 ((0 + 1)..^(𝑇 + 1)) = (1..^(𝑇 + 1))
118, 10eleqtrdi 2844 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ (1..^(𝑇 + 1)))
12 eleq1 2822 . . . . . . . . . . 11 (𝑡 = (𝑘 + 1) → (𝑡 ∈ (1..^(𝑇 + 1)) ↔ (𝑘 + 1) ∈ (1..^(𝑇 + 1))))
1311, 12syl5ibrcom 247 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1))))
1413imim1d 82 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → ((𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡)))))
1514ralimia 3070 . . . . . . . 8 (∀𝑘 ∈ (0..^𝑇)(𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → ∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))))
163, 5, 15mp2b 10 . . . . . . 7 𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡)))
17 elfzoelz 13676 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ)
18 zre 12592 . . . . . . . . . . 11 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
19 ltp1 12081 . . . . . . . . . . 11 (𝑘 ∈ ℝ → 𝑘 < (𝑘 + 1))
2017, 18, 193syl 18 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → 𝑘 < (𝑘 + 1))
21 breq2 5123 . . . . . . . . . 10 (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡𝑘 < (𝑘 + 1)))
2220, 21syl5ibrcom 247 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡))
23 ax-2 7 . . . . . . . . 9 ((𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → ((𝑡 = (𝑘 + 1) → 𝑘 < 𝑡) → (𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡))))
2422, 23syl5com 31 . . . . . . . 8 (𝑘 ∈ (0..^𝑇) → ((𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → (𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡))))
2524ralimia 3070 . . . . . . 7 (∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → ∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡)))
26 fveq2 6876 . . . . . . . . . . 11 (𝑡 = (𝑘 + 1) → (𝐵𝑡) = (𝐵‘(𝑘 + 1)))
2726breq2d 5131 . . . . . . . . . 10 (𝑡 = (𝑘 + 1) → ((𝐵𝑘) < (𝐵𝑡) ↔ (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
2827biimpd 229 . . . . . . . . 9 (𝑡 = (𝑘 + 1) → ((𝐵𝑘) < (𝐵𝑡) → (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
2928a2i 14 . . . . . . . 8 ((𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡)) → (𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
3029ralimi 3073 . . . . . . 7 (∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡)) → ∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
3116, 25, 30mp2b 10 . . . . . 6 𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵‘(𝑘 + 1)))
3231rspec 3233 . . . . 5 (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
3332eximdv 1917 . . . 4 (𝑘 ∈ (0..^𝑇) → (∃𝑡 𝑡 = (𝑘 + 1) → ∃𝑡(𝐵𝑘) < (𝐵‘(𝑘 + 1))))
342, 33mpi 20 . . 3 (𝑘 ∈ (0..^𝑇) → ∃𝑡(𝐵𝑘) < (𝐵‘(𝑘 + 1)))
35 ax5e 1912 . . 3 (∃𝑡(𝐵𝑘) < (𝐵‘(𝑘 + 1)) → (𝐵𝑘) < (𝐵‘(𝑘 + 1)))
3634, 35syl 17 . 2 (𝑘 ∈ (0..^𝑇) → (𝐵𝑘) < (𝐵‘(𝑘 + 1)))
3736rgen 3053 1 𝑘 ∈ (0..^𝑇)(𝐵𝑘) < (𝐵‘(𝑘 + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2108  wral 3051   class class class wbr 5119  cfv 6531  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   < clt 11269  cz 12588  ..^cfzo 13671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator