Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  natlocalincr Structured version   Visualization version   GIF version

Theorem natlocalincr 46891
Description: Global monotonicity on half-open range implies local monotonicity. Inference form. (Contributed by Ender Ting, 22-Nov-2024.)
Hypothesis
Ref Expression
natlocalincr.1 𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))
Assertion
Ref Expression
natlocalincr 𝑘 ∈ (0..^𝑇)(𝐵𝑘) < (𝐵‘(𝑘 + 1))
Distinct variable groups:   𝑡,𝐵   𝑡,𝑇   𝑡,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑇(𝑘)

Proof of Theorem natlocalincr
StepHypRef Expression
1 ovex 7464 . . . . 5 (𝑘 + 1) ∈ V
21isseti 3498 . . . 4 𝑡 𝑡 = (𝑘 + 1)
3 natlocalincr.1 . . . . . . . 8 𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))
4 rsp 3247 . . . . . . . . 9 (∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡)) → (𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))))
54ralimi 3083 . . . . . . . 8 (∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡)) → ∀𝑘 ∈ (0..^𝑇)(𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))))
6 1z 12647 . . . . . . . . . . . . 13 1 ∈ ℤ
7 fzoaddel 13756 . . . . . . . . . . . . 13 ((𝑘 ∈ (0..^𝑇) ∧ 1 ∈ ℤ) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1)))
86, 7mpan2 691 . . . . . . . . . . . 12 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1)))
9 0p1e1 12388 . . . . . . . . . . . . 13 (0 + 1) = 1
109oveq1i 7441 . . . . . . . . . . . 12 ((0 + 1)..^(𝑇 + 1)) = (1..^(𝑇 + 1))
118, 10eleqtrdi 2851 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ (1..^(𝑇 + 1)))
12 eleq1 2829 . . . . . . . . . . 11 (𝑡 = (𝑘 + 1) → (𝑡 ∈ (1..^(𝑇 + 1)) ↔ (𝑘 + 1) ∈ (1..^(𝑇 + 1))))
1311, 12syl5ibrcom 247 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1))))
1413imim1d 82 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → ((𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡)))))
1514ralimia 3080 . . . . . . . 8 (∀𝑘 ∈ (0..^𝑇)(𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → ∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))))
163, 5, 15mp2b 10 . . . . . . 7 𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡)))
17 elfzoelz 13699 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ)
18 zre 12617 . . . . . . . . . . 11 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
19 ltp1 12107 . . . . . . . . . . 11 (𝑘 ∈ ℝ → 𝑘 < (𝑘 + 1))
2017, 18, 193syl 18 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → 𝑘 < (𝑘 + 1))
21 breq2 5147 . . . . . . . . . 10 (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡𝑘 < (𝑘 + 1)))
2220, 21syl5ibrcom 247 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡))
23 ax-2 7 . . . . . . . . 9 ((𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → ((𝑡 = (𝑘 + 1) → 𝑘 < 𝑡) → (𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡))))
2422, 23syl5com 31 . . . . . . . 8 (𝑘 ∈ (0..^𝑇) → ((𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → (𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡))))
2524ralimia 3080 . . . . . . 7 (∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → ∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡)))
26 fveq2 6906 . . . . . . . . . . 11 (𝑡 = (𝑘 + 1) → (𝐵𝑡) = (𝐵‘(𝑘 + 1)))
2726breq2d 5155 . . . . . . . . . 10 (𝑡 = (𝑘 + 1) → ((𝐵𝑘) < (𝐵𝑡) ↔ (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
2827biimpd 229 . . . . . . . . 9 (𝑡 = (𝑘 + 1) → ((𝐵𝑘) < (𝐵𝑡) → (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
2928a2i 14 . . . . . . . 8 ((𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡)) → (𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
3029ralimi 3083 . . . . . . 7 (∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡)) → ∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
3116, 25, 30mp2b 10 . . . . . 6 𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵‘(𝑘 + 1)))
3231rspec 3250 . . . . 5 (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
3332eximdv 1917 . . . 4 (𝑘 ∈ (0..^𝑇) → (∃𝑡 𝑡 = (𝑘 + 1) → ∃𝑡(𝐵𝑘) < (𝐵‘(𝑘 + 1))))
342, 33mpi 20 . . 3 (𝑘 ∈ (0..^𝑇) → ∃𝑡(𝐵𝑘) < (𝐵‘(𝑘 + 1)))
35 ax5e 1912 . . 3 (∃𝑡(𝐵𝑘) < (𝐵‘(𝑘 + 1)) → (𝐵𝑘) < (𝐵‘(𝑘 + 1)))
3634, 35syl 17 . 2 (𝑘 ∈ (0..^𝑇) → (𝐵𝑘) < (𝐵‘(𝑘 + 1)))
3736rgen 3063 1 𝑘 ∈ (0..^𝑇)(𝐵𝑘) < (𝐵‘(𝑘 + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2108  wral 3061   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cz 12613  ..^cfzo 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator