Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  natlocalincr Structured version   Visualization version   GIF version

Theorem natlocalincr 46763
Description: Global monotonicity on half-open range implies local monotonicity. (Contributed by Ender Ting, 22-Nov-2024.)
Hypothesis
Ref Expression
natlocalincr.1 𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))
Assertion
Ref Expression
natlocalincr 𝑘 ∈ (0..^𝑇)(𝐵𝑘) < (𝐵‘(𝑘 + 1))
Distinct variable groups:   𝑡,𝐵   𝑡,𝑇   𝑡,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑇(𝑘)

Proof of Theorem natlocalincr
StepHypRef Expression
1 ovex 7348 . . . . 5 (𝑘 + 1) ∈ V
21isseti 3456 . . . 4 𝑡 𝑡 = (𝑘 + 1)
3 natlocalincr.1 . . . . . . . 8 𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))
4 rsp 3227 . . . . . . . . 9 (∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡)) → (𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))))
54ralimi 3083 . . . . . . . 8 (∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡)) → ∀𝑘 ∈ (0..^𝑇)(𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))))
6 1z 12423 . . . . . . . . . . . . 13 1 ∈ ℤ
7 fzoaddel 13513 . . . . . . . . . . . . 13 ((𝑘 ∈ (0..^𝑇) ∧ 1 ∈ ℤ) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1)))
86, 7mpan2 688 . . . . . . . . . . . 12 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1)))
9 0p1e1 12168 . . . . . . . . . . . . 13 (0 + 1) = 1
109oveq1i 7325 . . . . . . . . . . . 12 ((0 + 1)..^(𝑇 + 1)) = (1..^(𝑇 + 1))
118, 10eleqtrdi 2848 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ (1..^(𝑇 + 1)))
12 eleq1 2825 . . . . . . . . . . 11 (𝑡 = (𝑘 + 1) → (𝑡 ∈ (1..^(𝑇 + 1)) ↔ (𝑘 + 1) ∈ (1..^(𝑇 + 1))))
1311, 12syl5ibrcom 246 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1))))
1413imim1d 82 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → ((𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡)))))
1514ralimia 3080 . . . . . . . 8 (∀𝑘 ∈ (0..^𝑇)(𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → ∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))))
163, 5, 15mp2b 10 . . . . . . 7 𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡)))
17 elfzoelz 13460 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ)
18 zre 12396 . . . . . . . . . . 11 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
19 ltp1 11888 . . . . . . . . . . 11 (𝑘 ∈ ℝ → 𝑘 < (𝑘 + 1))
2017, 18, 193syl 18 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → 𝑘 < (𝑘 + 1))
21 breq2 5091 . . . . . . . . . 10 (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡𝑘 < (𝑘 + 1)))
2220, 21syl5ibrcom 246 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡))
23 ax-2 7 . . . . . . . . 9 ((𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → ((𝑡 = (𝑘 + 1) → 𝑘 < 𝑡) → (𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡))))
2422, 23syl5com 31 . . . . . . . 8 (𝑘 ∈ (0..^𝑇) → ((𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → (𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡))))
2524ralimia 3080 . . . . . . 7 (∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → ∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡)))
26 fveq2 6811 . . . . . . . . . . 11 (𝑡 = (𝑘 + 1) → (𝐵𝑡) = (𝐵‘(𝑘 + 1)))
2726breq2d 5099 . . . . . . . . . 10 (𝑡 = (𝑘 + 1) → ((𝐵𝑘) < (𝐵𝑡) ↔ (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
2827biimpd 228 . . . . . . . . 9 (𝑡 = (𝑘 + 1) → ((𝐵𝑘) < (𝐵𝑡) → (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
2928a2i 14 . . . . . . . 8 ((𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡)) → (𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
3029ralimi 3083 . . . . . . 7 (∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡)) → ∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
3116, 25, 30mp2b 10 . . . . . 6 𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵‘(𝑘 + 1)))
3231rspec 3230 . . . . 5 (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
3332eximdv 1919 . . . 4 (𝑘 ∈ (0..^𝑇) → (∃𝑡 𝑡 = (𝑘 + 1) → ∃𝑡(𝐵𝑘) < (𝐵‘(𝑘 + 1))))
342, 33mpi 20 . . 3 (𝑘 ∈ (0..^𝑇) → ∃𝑡(𝐵𝑘) < (𝐵‘(𝑘 + 1)))
35 ax5e 1914 . . 3 (∃𝑡(𝐵𝑘) < (𝐵‘(𝑘 + 1)) → (𝐵𝑘) < (𝐵‘(𝑘 + 1)))
3634, 35syl 17 . 2 (𝑘 ∈ (0..^𝑇) → (𝐵𝑘) < (𝐵‘(𝑘 + 1)))
3736rgen 3064 1 𝑘 ∈ (0..^𝑇)(𝐵𝑘) < (𝐵‘(𝑘 + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1780  wcel 2105  wral 3062   class class class wbr 5087  cfv 6465  (class class class)co 7315  cr 10943  0cc0 10944  1c1 10945   + caddc 10947   < clt 11082  cz 12392  ..^cfzo 13455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-cnex 11000  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020  ax-pre-mulgt0 11021
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-om 7758  df-1st 7876  df-2nd 7877  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-er 8546  df-en 8782  df-dom 8783  df-sdom 8784  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281  df-nn 12047  df-n0 12307  df-z 12393  df-uz 12656  df-fz 13313  df-fzo 13456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator