Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  natlocalincr Structured version   Visualization version   GIF version

Theorem natlocalincr 46874
Description: Global monotonicity on half-open range implies local monotonicity. Inference form. (Contributed by Ender Ting, 22-Nov-2024.)
Hypothesis
Ref Expression
natlocalincr.1 𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))
Assertion
Ref Expression
natlocalincr 𝑘 ∈ (0..^𝑇)(𝐵𝑘) < (𝐵‘(𝑘 + 1))
Distinct variable groups:   𝑡,𝐵   𝑡,𝑇   𝑡,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑇(𝑘)

Proof of Theorem natlocalincr
StepHypRef Expression
1 ovex 7420 . . . . 5 (𝑘 + 1) ∈ V
21isseti 3465 . . . 4 𝑡 𝑡 = (𝑘 + 1)
3 natlocalincr.1 . . . . . . . 8 𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))
4 rsp 3225 . . . . . . . . 9 (∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡)) → (𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))))
54ralimi 3066 . . . . . . . 8 (∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡)) → ∀𝑘 ∈ (0..^𝑇)(𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))))
6 1z 12563 . . . . . . . . . . . . 13 1 ∈ ℤ
7 fzoaddel 13678 . . . . . . . . . . . . 13 ((𝑘 ∈ (0..^𝑇) ∧ 1 ∈ ℤ) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1)))
86, 7mpan2 691 . . . . . . . . . . . 12 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1)))
9 0p1e1 12303 . . . . . . . . . . . . 13 (0 + 1) = 1
109oveq1i 7397 . . . . . . . . . . . 12 ((0 + 1)..^(𝑇 + 1)) = (1..^(𝑇 + 1))
118, 10eleqtrdi 2838 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ (1..^(𝑇 + 1)))
12 eleq1 2816 . . . . . . . . . . 11 (𝑡 = (𝑘 + 1) → (𝑡 ∈ (1..^(𝑇 + 1)) ↔ (𝑘 + 1) ∈ (1..^(𝑇 + 1))))
1311, 12syl5ibrcom 247 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1))))
1413imim1d 82 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → ((𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡)))))
1514ralimia 3063 . . . . . . . 8 (∀𝑘 ∈ (0..^𝑇)(𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → ∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))))
163, 5, 15mp2b 10 . . . . . . 7 𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡)))
17 elfzoelz 13620 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ)
18 zre 12533 . . . . . . . . . . 11 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
19 ltp1 12022 . . . . . . . . . . 11 (𝑘 ∈ ℝ → 𝑘 < (𝑘 + 1))
2017, 18, 193syl 18 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → 𝑘 < (𝑘 + 1))
21 breq2 5111 . . . . . . . . . 10 (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡𝑘 < (𝑘 + 1)))
2220, 21syl5ibrcom 247 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡))
23 ax-2 7 . . . . . . . . 9 ((𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → ((𝑡 = (𝑘 + 1) → 𝑘 < 𝑡) → (𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡))))
2422, 23syl5com 31 . . . . . . . 8 (𝑘 ∈ (0..^𝑇) → ((𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → (𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡))))
2524ralimia 3063 . . . . . . 7 (∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → ∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡)))
26 fveq2 6858 . . . . . . . . . . 11 (𝑡 = (𝑘 + 1) → (𝐵𝑡) = (𝐵‘(𝑘 + 1)))
2726breq2d 5119 . . . . . . . . . 10 (𝑡 = (𝑘 + 1) → ((𝐵𝑘) < (𝐵𝑡) ↔ (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
2827biimpd 229 . . . . . . . . 9 (𝑡 = (𝑘 + 1) → ((𝐵𝑘) < (𝐵𝑡) → (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
2928a2i 14 . . . . . . . 8 ((𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡)) → (𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
3029ralimi 3066 . . . . . . 7 (∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡)) → ∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
3116, 25, 30mp2b 10 . . . . . 6 𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵‘(𝑘 + 1)))
3231rspec 3228 . . . . 5 (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
3332eximdv 1917 . . . 4 (𝑘 ∈ (0..^𝑇) → (∃𝑡 𝑡 = (𝑘 + 1) → ∃𝑡(𝐵𝑘) < (𝐵‘(𝑘 + 1))))
342, 33mpi 20 . . 3 (𝑘 ∈ (0..^𝑇) → ∃𝑡(𝐵𝑘) < (𝐵‘(𝑘 + 1)))
35 ax5e 1912 . . 3 (∃𝑡(𝐵𝑘) < (𝐵‘(𝑘 + 1)) → (𝐵𝑘) < (𝐵‘(𝑘 + 1)))
3634, 35syl 17 . 2 (𝑘 ∈ (0..^𝑇) → (𝐵𝑘) < (𝐵‘(𝑘 + 1)))
3736rgen 3046 1 𝑘 ∈ (0..^𝑇)(𝐵𝑘) < (𝐵‘(𝑘 + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2109  wral 3044   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cz 12529  ..^cfzo 13615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator