Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  natlocalincr Structured version   Visualization version   GIF version

Theorem natlocalincr 46984
Description: Global monotonicity on half-open range implies local monotonicity. Inference form. (Contributed by Ender Ting, 22-Nov-2024.)
Hypothesis
Ref Expression
natlocalincr.1 𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))
Assertion
Ref Expression
natlocalincr 𝑘 ∈ (0..^𝑇)(𝐵𝑘) < (𝐵‘(𝑘 + 1))
Distinct variable groups:   𝑡,𝐵   𝑡,𝑇   𝑡,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝑇(𝑘)

Proof of Theorem natlocalincr
StepHypRef Expression
1 ovex 7379 . . . . 5 (𝑘 + 1) ∈ V
21isseti 3454 . . . 4 𝑡 𝑡 = (𝑘 + 1)
3 natlocalincr.1 . . . . . . . 8 𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))
4 rsp 3220 . . . . . . . . 9 (∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡)) → (𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))))
54ralimi 3069 . . . . . . . 8 (∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡)) → ∀𝑘 ∈ (0..^𝑇)(𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))))
6 1z 12502 . . . . . . . . . . . . 13 1 ∈ ℤ
7 fzoaddel 13617 . . . . . . . . . . . . 13 ((𝑘 ∈ (0..^𝑇) ∧ 1 ∈ ℤ) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1)))
86, 7mpan2 691 . . . . . . . . . . . 12 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1)))
9 0p1e1 12242 . . . . . . . . . . . . 13 (0 + 1) = 1
109oveq1i 7356 . . . . . . . . . . . 12 ((0 + 1)..^(𝑇 + 1)) = (1..^(𝑇 + 1))
118, 10eleqtrdi 2841 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ (1..^(𝑇 + 1)))
12 eleq1 2819 . . . . . . . . . . 11 (𝑡 = (𝑘 + 1) → (𝑡 ∈ (1..^(𝑇 + 1)) ↔ (𝑘 + 1) ∈ (1..^(𝑇 + 1))))
1311, 12syl5ibrcom 247 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1))))
1413imim1d 82 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → ((𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡)))))
1514ralimia 3066 . . . . . . . 8 (∀𝑘 ∈ (0..^𝑇)(𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → ∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))))
163, 5, 15mp2b 10 . . . . . . 7 𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡)))
17 elfzoelz 13559 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ)
18 zre 12472 . . . . . . . . . . 11 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
19 ltp1 11961 . . . . . . . . . . 11 (𝑘 ∈ ℝ → 𝑘 < (𝑘 + 1))
2017, 18, 193syl 18 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑇) → 𝑘 < (𝑘 + 1))
21 breq2 5093 . . . . . . . . . 10 (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡𝑘 < (𝑘 + 1)))
2220, 21syl5ibrcom 247 . . . . . . . . 9 (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡))
23 ax-2 7 . . . . . . . . 9 ((𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → ((𝑡 = (𝑘 + 1) → 𝑘 < 𝑡) → (𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡))))
2422, 23syl5com 31 . . . . . . . 8 (𝑘 ∈ (0..^𝑇) → ((𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → (𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡))))
2524ralimia 3066 . . . . . . 7 (∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵𝑘) < (𝐵𝑡))) → ∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡)))
26 fveq2 6822 . . . . . . . . . . 11 (𝑡 = (𝑘 + 1) → (𝐵𝑡) = (𝐵‘(𝑘 + 1)))
2726breq2d 5101 . . . . . . . . . 10 (𝑡 = (𝑘 + 1) → ((𝐵𝑘) < (𝐵𝑡) ↔ (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
2827biimpd 229 . . . . . . . . 9 (𝑡 = (𝑘 + 1) → ((𝐵𝑘) < (𝐵𝑡) → (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
2928a2i 14 . . . . . . . 8 ((𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡)) → (𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
3029ralimi 3069 . . . . . . 7 (∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵𝑡)) → ∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
3116, 25, 30mp2b 10 . . . . . 6 𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵‘(𝑘 + 1)))
3231rspec 3223 . . . . 5 (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → (𝐵𝑘) < (𝐵‘(𝑘 + 1))))
3332eximdv 1918 . . . 4 (𝑘 ∈ (0..^𝑇) → (∃𝑡 𝑡 = (𝑘 + 1) → ∃𝑡(𝐵𝑘) < (𝐵‘(𝑘 + 1))))
342, 33mpi 20 . . 3 (𝑘 ∈ (0..^𝑇) → ∃𝑡(𝐵𝑘) < (𝐵‘(𝑘 + 1)))
35 ax5e 1913 . . 3 (∃𝑡(𝐵𝑘) < (𝐵‘(𝑘 + 1)) → (𝐵𝑘) < (𝐵‘(𝑘 + 1)))
3634, 35syl 17 . 2 (𝑘 ∈ (0..^𝑇) → (𝐵𝑘) < (𝐵‘(𝑘 + 1)))
3736rgen 3049 1 𝑘 ∈ (0..^𝑇)(𝐵𝑘) < (𝐵‘(𝑘 + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wex 1780  wcel 2111  wral 3047   class class class wbr 5089  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cz 12468  ..^cfzo 13554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator