Proof of Theorem natlocalincr
Step | Hyp | Ref
| Expression |
1 | | ovex 7308 |
. . . . 5
⊢ (𝑘 + 1) ∈ V |
2 | 1 | isseti 3447 |
. . . 4
⊢
∃𝑡 𝑡 = (𝑘 + 1) |
3 | | natlocalincr.1 |
. . . . . . . 8
⊢
∀𝑘 ∈
(0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘) < (𝐵‘𝑡)) |
4 | | rsp 3131 |
. . . . . . . . 9
⊢
(∀𝑡 ∈
(1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘) < (𝐵‘𝑡)) → (𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵‘𝑘) < (𝐵‘𝑡)))) |
5 | 4 | ralimi 3087 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘) < (𝐵‘𝑡)) → ∀𝑘 ∈ (0..^𝑇)(𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵‘𝑘) < (𝐵‘𝑡)))) |
6 | | 1z 12350 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℤ |
7 | | fzoaddel 13440 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ (0..^𝑇) ∧ 1 ∈ ℤ) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1))) |
8 | 6, 7 | mpan2 688 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ ((0 + 1)..^(𝑇 + 1))) |
9 | | 0p1e1 12095 |
. . . . . . . . . . . . 13
⊢ (0 + 1) =
1 |
10 | 9 | oveq1i 7285 |
. . . . . . . . . . . 12
⊢ ((0 +
1)..^(𝑇 + 1)) = (1..^(𝑇 + 1)) |
11 | 8, 10 | eleqtrdi 2849 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0..^𝑇) → (𝑘 + 1) ∈ (1..^(𝑇 + 1))) |
12 | | eleq1 2826 |
. . . . . . . . . . 11
⊢ (𝑡 = (𝑘 + 1) → (𝑡 ∈ (1..^(𝑇 + 1)) ↔ (𝑘 + 1) ∈ (1..^(𝑇 + 1)))) |
13 | 11, 12 | syl5ibrcom 246 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑡 ∈ (1..^(𝑇 + 1)))) |
14 | 13 | imim1d 82 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0..^𝑇) → ((𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵‘𝑘) < (𝐵‘𝑡))) → (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵‘𝑘) < (𝐵‘𝑡))))) |
15 | 14 | ralimia 3085 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(0..^𝑇)(𝑡 ∈ (1..^(𝑇 + 1)) → (𝑘 < 𝑡 → (𝐵‘𝑘) < (𝐵‘𝑡))) → ∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵‘𝑘) < (𝐵‘𝑡)))) |
16 | 3, 5, 15 | mp2b 10 |
. . . . . . 7
⊢
∀𝑘 ∈
(0..^𝑇)(𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵‘𝑘) < (𝐵‘𝑡))) |
17 | | elfzoelz 13387 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 ∈ ℤ) |
18 | | zre 12323 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℤ → 𝑘 ∈
ℝ) |
19 | | ltp1 11815 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℝ → 𝑘 < (𝑘 + 1)) |
20 | 17, 18, 19 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0..^𝑇) → 𝑘 < (𝑘 + 1)) |
21 | | breq2 5078 |
. . . . . . . . . 10
⊢ (𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 ↔ 𝑘 < (𝑘 + 1))) |
22 | 20, 21 | syl5ibrcom 246 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → 𝑘 < 𝑡)) |
23 | | ax-2 7 |
. . . . . . . . 9
⊢ ((𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵‘𝑘) < (𝐵‘𝑡))) → ((𝑡 = (𝑘 + 1) → 𝑘 < 𝑡) → (𝑡 = (𝑘 + 1) → (𝐵‘𝑘) < (𝐵‘𝑡)))) |
24 | 22, 23 | syl5com 31 |
. . . . . . . 8
⊢ (𝑘 ∈ (0..^𝑇) → ((𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵‘𝑘) < (𝐵‘𝑡))) → (𝑡 = (𝑘 + 1) → (𝐵‘𝑘) < (𝐵‘𝑡)))) |
25 | 24 | ralimia 3085 |
. . . . . . 7
⊢
(∀𝑘 ∈
(0..^𝑇)(𝑡 = (𝑘 + 1) → (𝑘 < 𝑡 → (𝐵‘𝑘) < (𝐵‘𝑡))) → ∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵‘𝑘) < (𝐵‘𝑡))) |
26 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑡 = (𝑘 + 1) → (𝐵‘𝑡) = (𝐵‘(𝑘 + 1))) |
27 | 26 | breq2d 5086 |
. . . . . . . . . 10
⊢ (𝑡 = (𝑘 + 1) → ((𝐵‘𝑘) < (𝐵‘𝑡) ↔ (𝐵‘𝑘) < (𝐵‘(𝑘 + 1)))) |
28 | 27 | biimpd 228 |
. . . . . . . . 9
⊢ (𝑡 = (𝑘 + 1) → ((𝐵‘𝑘) < (𝐵‘𝑡) → (𝐵‘𝑘) < (𝐵‘(𝑘 + 1)))) |
29 | 28 | a2i 14 |
. . . . . . . 8
⊢ ((𝑡 = (𝑘 + 1) → (𝐵‘𝑘) < (𝐵‘𝑡)) → (𝑡 = (𝑘 + 1) → (𝐵‘𝑘) < (𝐵‘(𝑘 + 1)))) |
30 | 29 | ralimi 3087 |
. . . . . . 7
⊢
(∀𝑘 ∈
(0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵‘𝑘) < (𝐵‘𝑡)) → ∀𝑘 ∈ (0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵‘𝑘) < (𝐵‘(𝑘 + 1)))) |
31 | 16, 25, 30 | mp2b 10 |
. . . . . 6
⊢
∀𝑘 ∈
(0..^𝑇)(𝑡 = (𝑘 + 1) → (𝐵‘𝑘) < (𝐵‘(𝑘 + 1))) |
32 | 31 | rspec 3133 |
. . . . 5
⊢ (𝑘 ∈ (0..^𝑇) → (𝑡 = (𝑘 + 1) → (𝐵‘𝑘) < (𝐵‘(𝑘 + 1)))) |
33 | 32 | eximdv 1920 |
. . . 4
⊢ (𝑘 ∈ (0..^𝑇) → (∃𝑡 𝑡 = (𝑘 + 1) → ∃𝑡(𝐵‘𝑘) < (𝐵‘(𝑘 + 1)))) |
34 | 2, 33 | mpi 20 |
. . 3
⊢ (𝑘 ∈ (0..^𝑇) → ∃𝑡(𝐵‘𝑘) < (𝐵‘(𝑘 + 1))) |
35 | | ax5e 1915 |
. . 3
⊢
(∃𝑡(𝐵‘𝑘) < (𝐵‘(𝑘 + 1)) → (𝐵‘𝑘) < (𝐵‘(𝑘 + 1))) |
36 | 34, 35 | syl 17 |
. 2
⊢ (𝑘 ∈ (0..^𝑇) → (𝐵‘𝑘) < (𝐵‘(𝑘 + 1))) |
37 | 36 | rgen 3074 |
1
⊢
∀𝑘 ∈
(0..^𝑇)(𝐵‘𝑘) < (𝐵‘(𝑘 + 1)) |