Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashreprin Structured version   Visualization version   GIF version

Theorem hashreprin 34657
Description: Express a sum of representations over an intersection using a product of the indicator function. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
hashreprin.b (𝜑𝐵 ∈ Fin)
hashreprin.1 (𝜑𝐵 ⊆ ℕ)
Assertion
Ref Expression
hashreprin (𝜑 → (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
Distinct variable groups:   𝐴,𝑐   𝑀,𝑐   𝑆,𝑎,𝑐   𝜑,𝑐   𝐴,𝑎   𝐵,𝑎,𝑐   𝑀,𝑎   𝜑,𝑎

Proof of Theorem hashreprin
StepHypRef Expression
1 hashreprin.1 . . . . 5 (𝜑𝐵 ⊆ ℕ)
2 reprval.m . . . . 5 (𝜑𝑀 ∈ ℤ)
3 reprval.s . . . . 5 (𝜑𝑆 ∈ ℕ0)
4 hashreprin.b . . . . 5 (𝜑𝐵 ∈ Fin)
51, 2, 3, 4reprfi 34653 . . . 4 (𝜑 → (𝐵(repr‘𝑆)𝑀) ∈ Fin)
6 inss2 4218 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
76a1i 11 . . . . 5 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
81, 2, 3, 7reprss 34654 . . . 4 (𝜑 → ((𝐴𝐵)(repr‘𝑆)𝑀) ⊆ (𝐵(repr‘𝑆)𝑀))
95, 8ssfid 9278 . . 3 (𝜑 → ((𝐴𝐵)(repr‘𝑆)𝑀) ∈ Fin)
10 1cnd 11235 . . 3 (𝜑 → 1 ∈ ℂ)
11 fsumconst 15811 . . 3 ((((𝐴𝐵)(repr‘𝑆)𝑀) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 = ((♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) · 1))
129, 10, 11syl2anc 584 . 2 (𝜑 → Σ𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 = ((♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) · 1))
1310ralrimivw 3137 . . . 4 (𝜑 → ∀𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 ∈ ℂ)
145olcd 874 . . . 4 (𝜑 → ((𝐵(repr‘𝑆)𝑀) ⊆ (ℤ‘0) ∨ (𝐵(repr‘𝑆)𝑀) ∈ Fin))
15 sumss2 15747 . . . 4 (((((𝐴𝐵)(repr‘𝑆)𝑀) ⊆ (𝐵(repr‘𝑆)𝑀) ∧ ∀𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 ∈ ℂ) ∧ ((𝐵(repr‘𝑆)𝑀) ⊆ (ℤ‘0) ∨ (𝐵(repr‘𝑆)𝑀) ∈ Fin)) → Σ𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)if(𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀), 1, 0))
168, 13, 14, 15syl21anc 837 . . 3 (𝜑 → Σ𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)if(𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀), 1, 0))
171, 2, 3reprinrn 34655 . . . . . . . 8 (𝜑 → (𝑐 ∈ ((𝐵𝐴)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴)))
18 incom 4189 . . . . . . . . . . . 12 (𝐵𝐴) = (𝐴𝐵)
1918oveq1i 7420 . . . . . . . . . . 11 ((𝐵𝐴)(repr‘𝑆)𝑀) = ((𝐴𝐵)(repr‘𝑆)𝑀)
2019eleq2i 2827 . . . . . . . . . 10 (𝑐 ∈ ((𝐵𝐴)(repr‘𝑆)𝑀) ↔ 𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀))
2120bibi1i 338 . . . . . . . . 9 ((𝑐 ∈ ((𝐵𝐴)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴)) ↔ (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴)))
2221imbi2i 336 . . . . . . . 8 ((𝜑 → (𝑐 ∈ ((𝐵𝐴)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴))) ↔ (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴))))
2317, 22mpbi 230 . . . . . . 7 (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴)))
2423baibd 539 . . . . . 6 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ ran 𝑐𝐴))
2524ifbid 4529 . . . . 5 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → if(𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀), 1, 0) = if(ran 𝑐𝐴, 1, 0))
26 nnex 12251 . . . . . . . . 9 ℕ ∈ V
2726a1i 11 . . . . . . . 8 (𝜑 → ℕ ∈ V)
2827ralrimivw 3137 . . . . . . 7 (𝜑 → ∀𝑐 ∈ (𝐵(repr‘𝑆)𝑀)ℕ ∈ V)
2928r19.21bi 3238 . . . . . 6 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → ℕ ∈ V)
30 fzofi 13997 . . . . . . 7 (0..^𝑆) ∈ Fin
3130a1i 11 . . . . . 6 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → (0..^𝑆) ∈ Fin)
32 reprval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ)
3332adantr 480 . . . . . 6 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝐴 ⊆ ℕ)
341adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝐵 ⊆ ℕ)
352adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑀 ∈ ℤ)
363adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑆 ∈ ℕ0)
37 simpr 484 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑐 ∈ (𝐵(repr‘𝑆)𝑀))
3834, 35, 36, 37reprf 34649 . . . . . . 7 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑐:(0..^𝑆)⟶𝐵)
3938, 34fssd 6728 . . . . . 6 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑐:(0..^𝑆)⟶ℕ)
4029, 31, 33, 39prodindf 32845 . . . . 5 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) = if(ran 𝑐𝐴, 1, 0))
4125, 40eqtr4d 2774 . . . 4 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → if(𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀), 1, 0) = ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
4241sumeq2dv 15723 . . 3 (𝜑 → Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)if(𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀), 1, 0) = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
4316, 42eqtrd 2771 . 2 (𝜑 → Σ𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
44 hashcl 14379 . . . . 5 (((𝐴𝐵)(repr‘𝑆)𝑀) ∈ Fin → (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) ∈ ℕ0)
459, 44syl 17 . . . 4 (𝜑 → (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) ∈ ℕ0)
4645nn0cnd 12569 . . 3 (𝜑 → (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) ∈ ℂ)
4746mulridd 11257 . 2 (𝜑 → ((♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) · 1) = (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)))
4812, 43, 473eqtr3rd 2780 1 (𝜑 → (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  cin 3930  wss 3931  ifcif 4505  ran crn 5660  cfv 6536  (class class class)co 7410  Fincfn 8964  cc 11132  0cc0 11134  1c1 11135   · cmul 11139  cn 12245  0cn0 12506  cz 12593  cuz 12857  ..^cfzo 13676  chash 14353  Σcsu 15707  cprod 15924  𝟭cind 32832  reprcrepr 34645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-prod 15925  df-ind 32833  df-repr 34646
This theorem is referenced by:  hashrepr  34662  breprexpnat  34671
  Copyright terms: Public domain W3C validator