Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashreprin Structured version   Visualization version   GIF version

Theorem hashreprin 34597
Description: Express a sum of representations over an intersection using a product of the indicator function. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
hashreprin.b (𝜑𝐵 ∈ Fin)
hashreprin.1 (𝜑𝐵 ⊆ ℕ)
Assertion
Ref Expression
hashreprin (𝜑 → (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
Distinct variable groups:   𝐴,𝑐   𝑀,𝑐   𝑆,𝑎,𝑐   𝜑,𝑐   𝐴,𝑎   𝐵,𝑎,𝑐   𝑀,𝑎   𝜑,𝑎

Proof of Theorem hashreprin
StepHypRef Expression
1 hashreprin.1 . . . . 5 (𝜑𝐵 ⊆ ℕ)
2 reprval.m . . . . 5 (𝜑𝑀 ∈ ℤ)
3 reprval.s . . . . 5 (𝜑𝑆 ∈ ℕ0)
4 hashreprin.b . . . . 5 (𝜑𝐵 ∈ Fin)
51, 2, 3, 4reprfi 34593 . . . 4 (𝜑 → (𝐵(repr‘𝑆)𝑀) ∈ Fin)
6 inss2 4259 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
76a1i 11 . . . . 5 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
81, 2, 3, 7reprss 34594 . . . 4 (𝜑 → ((𝐴𝐵)(repr‘𝑆)𝑀) ⊆ (𝐵(repr‘𝑆)𝑀))
95, 8ssfid 9329 . . 3 (𝜑 → ((𝐴𝐵)(repr‘𝑆)𝑀) ∈ Fin)
10 1cnd 11285 . . 3 (𝜑 → 1 ∈ ℂ)
11 fsumconst 15838 . . 3 ((((𝐴𝐵)(repr‘𝑆)𝑀) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 = ((♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) · 1))
129, 10, 11syl2anc 583 . 2 (𝜑 → Σ𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 = ((♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) · 1))
1310ralrimivw 3156 . . . 4 (𝜑 → ∀𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 ∈ ℂ)
145olcd 873 . . . 4 (𝜑 → ((𝐵(repr‘𝑆)𝑀) ⊆ (ℤ‘0) ∨ (𝐵(repr‘𝑆)𝑀) ∈ Fin))
15 sumss2 15774 . . . 4 (((((𝐴𝐵)(repr‘𝑆)𝑀) ⊆ (𝐵(repr‘𝑆)𝑀) ∧ ∀𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 ∈ ℂ) ∧ ((𝐵(repr‘𝑆)𝑀) ⊆ (ℤ‘0) ∨ (𝐵(repr‘𝑆)𝑀) ∈ Fin)) → Σ𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)if(𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀), 1, 0))
168, 13, 14, 15syl21anc 837 . . 3 (𝜑 → Σ𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)if(𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀), 1, 0))
171, 2, 3reprinrn 34595 . . . . . . . 8 (𝜑 → (𝑐 ∈ ((𝐵𝐴)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴)))
18 incom 4230 . . . . . . . . . . . 12 (𝐵𝐴) = (𝐴𝐵)
1918oveq1i 7458 . . . . . . . . . . 11 ((𝐵𝐴)(repr‘𝑆)𝑀) = ((𝐴𝐵)(repr‘𝑆)𝑀)
2019eleq2i 2836 . . . . . . . . . 10 (𝑐 ∈ ((𝐵𝐴)(repr‘𝑆)𝑀) ↔ 𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀))
2120bibi1i 338 . . . . . . . . 9 ((𝑐 ∈ ((𝐵𝐴)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴)) ↔ (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴)))
2221imbi2i 336 . . . . . . . 8 ((𝜑 → (𝑐 ∈ ((𝐵𝐴)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴))) ↔ (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴))))
2317, 22mpbi 230 . . . . . . 7 (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴)))
2423baibd 539 . . . . . 6 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ ran 𝑐𝐴))
2524ifbid 4571 . . . . 5 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → if(𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀), 1, 0) = if(ran 𝑐𝐴, 1, 0))
26 nnex 12299 . . . . . . . . 9 ℕ ∈ V
2726a1i 11 . . . . . . . 8 (𝜑 → ℕ ∈ V)
2827ralrimivw 3156 . . . . . . 7 (𝜑 → ∀𝑐 ∈ (𝐵(repr‘𝑆)𝑀)ℕ ∈ V)
2928r19.21bi 3257 . . . . . 6 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → ℕ ∈ V)
30 fzofi 14025 . . . . . . 7 (0..^𝑆) ∈ Fin
3130a1i 11 . . . . . 6 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → (0..^𝑆) ∈ Fin)
32 reprval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ)
3332adantr 480 . . . . . 6 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝐴 ⊆ ℕ)
341adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝐵 ⊆ ℕ)
352adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑀 ∈ ℤ)
363adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑆 ∈ ℕ0)
37 simpr 484 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑐 ∈ (𝐵(repr‘𝑆)𝑀))
3834, 35, 36, 37reprf 34589 . . . . . . 7 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑐:(0..^𝑆)⟶𝐵)
3938, 34fssd 6764 . . . . . 6 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑐:(0..^𝑆)⟶ℕ)
4029, 31, 33, 39prodindf 33987 . . . . 5 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) = if(ran 𝑐𝐴, 1, 0))
4125, 40eqtr4d 2783 . . . 4 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → if(𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀), 1, 0) = ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
4241sumeq2dv 15750 . . 3 (𝜑 → Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)if(𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀), 1, 0) = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
4316, 42eqtrd 2780 . 2 (𝜑 → Σ𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
44 hashcl 14405 . . . . 5 (((𝐴𝐵)(repr‘𝑆)𝑀) ∈ Fin → (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) ∈ ℕ0)
459, 44syl 17 . . . 4 (𝜑 → (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) ∈ ℕ0)
4645nn0cnd 12615 . . 3 (𝜑 → (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) ∈ ℂ)
4746mulridd 11307 . 2 (𝜑 → ((♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) · 1) = (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)))
4812, 43, 473eqtr3rd 2789 1 (𝜑 → (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cin 3975  wss 3976  ifcif 4548  ran crn 5701  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  0cc0 11184  1c1 11185   · cmul 11189  cn 12293  0cn0 12553  cz 12639  cuz 12903  ..^cfzo 13711  chash 14379  Σcsu 15734  cprod 15951  𝟭cind 33974  reprcrepr 34585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-prod 15952  df-ind 33975  df-repr 34586
This theorem is referenced by:  hashrepr  34602  breprexpnat  34611
  Copyright terms: Public domain W3C validator