Proof of Theorem hashreprin
Step | Hyp | Ref
| Expression |
1 | | hashreprin.1 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ ℕ) |
2 | | reprval.m |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | | reprval.s |
. . . . 5
⊢ (𝜑 → 𝑆 ∈
ℕ0) |
4 | | hashreprin.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ Fin) |
5 | 1, 2, 3, 4 | reprfi 32496 |
. . . 4
⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) ∈ Fin) |
6 | | inss2 4160 |
. . . . . 6
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
7 | 6 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐵) |
8 | 1, 2, 3, 7 | reprss 32497 |
. . . 4
⊢ (𝜑 → ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) ⊆ (𝐵(repr‘𝑆)𝑀)) |
9 | 5, 8 | ssfid 8971 |
. . 3
⊢ (𝜑 → ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) ∈ Fin) |
10 | | 1cnd 10901 |
. . 3
⊢ (𝜑 → 1 ∈
ℂ) |
11 | | fsumconst 15430 |
. . 3
⊢ ((((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) ∈ Fin ∧ 1 ∈ ℂ) →
Σ𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)1 = ((♯‘((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)) · 1)) |
12 | 9, 10, 11 | syl2anc 583 |
. 2
⊢ (𝜑 → Σ𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)1 = ((♯‘((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)) · 1)) |
13 | 10 | ralrimivw 3108 |
. . . 4
⊢ (𝜑 → ∀𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)1 ∈ ℂ) |
14 | 5 | olcd 870 |
. . . 4
⊢ (𝜑 → ((𝐵(repr‘𝑆)𝑀) ⊆ (ℤ≥‘0)
∨ (𝐵(repr‘𝑆)𝑀) ∈ Fin)) |
15 | | sumss2 15366 |
. . . 4
⊢
(((((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) ⊆ (𝐵(repr‘𝑆)𝑀) ∧ ∀𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)1 ∈ ℂ) ∧ ((𝐵(repr‘𝑆)𝑀) ⊆ (ℤ≥‘0)
∨ (𝐵(repr‘𝑆)𝑀) ∈ Fin)) → Σ𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)1 = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)if(𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀), 1, 0)) |
16 | 8, 13, 14, 15 | syl21anc 834 |
. . 3
⊢ (𝜑 → Σ𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)1 = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)if(𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀), 1, 0)) |
17 | 1, 2, 3 | reprinrn 32498 |
. . . . . . . 8
⊢ (𝜑 → (𝑐 ∈ ((𝐵 ∩ 𝐴)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐 ⊆ 𝐴))) |
18 | | incom 4131 |
. . . . . . . . . . . 12
⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) |
19 | 18 | oveq1i 7265 |
. . . . . . . . . . 11
⊢ ((𝐵 ∩ 𝐴)(repr‘𝑆)𝑀) = ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) |
20 | 19 | eleq2i 2830 |
. . . . . . . . . 10
⊢ (𝑐 ∈ ((𝐵 ∩ 𝐴)(repr‘𝑆)𝑀) ↔ 𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)) |
21 | 20 | bibi1i 338 |
. . . . . . . . 9
⊢ ((𝑐 ∈ ((𝐵 ∩ 𝐴)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐 ⊆ 𝐴)) ↔ (𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐 ⊆ 𝐴))) |
22 | 21 | imbi2i 335 |
. . . . . . . 8
⊢ ((𝜑 → (𝑐 ∈ ((𝐵 ∩ 𝐴)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐 ⊆ 𝐴))) ↔ (𝜑 → (𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐 ⊆ 𝐴)))) |
23 | 17, 22 | mpbi 229 |
. . . . . . 7
⊢ (𝜑 → (𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐 ⊆ 𝐴))) |
24 | 23 | baibd 539 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → (𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) ↔ ran 𝑐 ⊆ 𝐴)) |
25 | 24 | ifbid 4479 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → if(𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀), 1, 0) = if(ran 𝑐 ⊆ 𝐴, 1, 0)) |
26 | | nnex 11909 |
. . . . . . . . 9
⊢ ℕ
∈ V |
27 | 26 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℕ ∈
V) |
28 | 27 | ralrimivw 3108 |
. . . . . . 7
⊢ (𝜑 → ∀𝑐 ∈ (𝐵(repr‘𝑆)𝑀)ℕ ∈ V) |
29 | 28 | r19.21bi 3132 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → ℕ ∈ V) |
30 | | fzofi 13622 |
. . . . . . 7
⊢
(0..^𝑆) ∈
Fin |
31 | 30 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → (0..^𝑆) ∈ Fin) |
32 | | reprval.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ ℕ) |
33 | 32 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝐴 ⊆ ℕ) |
34 | 1 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝐵 ⊆ ℕ) |
35 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑀 ∈ ℤ) |
36 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑆 ∈
ℕ0) |
37 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) |
38 | 34, 35, 36, 37 | reprf 32492 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑐:(0..^𝑆)⟶𝐵) |
39 | 38, 34 | fssd 6602 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑐:(0..^𝑆)⟶ℕ) |
40 | 29, 31, 33, 39 | prodindf 31891 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎)) = if(ran 𝑐 ⊆ 𝐴, 1, 0)) |
41 | 25, 40 | eqtr4d 2781 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → if(𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀), 1, 0) = ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
42 | 41 | sumeq2dv 15343 |
. . 3
⊢ (𝜑 → Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)if(𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀), 1, 0) = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
43 | 16, 42 | eqtrd 2778 |
. 2
⊢ (𝜑 → Σ𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)1 = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
44 | | hashcl 13999 |
. . . . 5
⊢ (((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) ∈ Fin → (♯‘((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)) ∈
ℕ0) |
45 | 9, 44 | syl 17 |
. . . 4
⊢ (𝜑 → (♯‘((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)) ∈
ℕ0) |
46 | 45 | nn0cnd 12225 |
. . 3
⊢ (𝜑 → (♯‘((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)) ∈ ℂ) |
47 | 46 | mulid1d 10923 |
. 2
⊢ (𝜑 → ((♯‘((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)) · 1) = (♯‘((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀))) |
48 | 12, 43, 47 | 3eqtr3rd 2787 |
1
⊢ (𝜑 → (♯‘((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)) = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |