Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashreprin Structured version   Visualization version   GIF version

Theorem hashreprin 32284
Description: Express a sum of representations over an intersection using a product of the indicator function. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
hashreprin.b (𝜑𝐵 ∈ Fin)
hashreprin.1 (𝜑𝐵 ⊆ ℕ)
Assertion
Ref Expression
hashreprin (𝜑 → (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
Distinct variable groups:   𝐴,𝑐   𝑀,𝑐   𝑆,𝑎,𝑐   𝜑,𝑐   𝐴,𝑎   𝐵,𝑎,𝑐   𝑀,𝑎   𝜑,𝑎

Proof of Theorem hashreprin
StepHypRef Expression
1 hashreprin.1 . . . . 5 (𝜑𝐵 ⊆ ℕ)
2 reprval.m . . . . 5 (𝜑𝑀 ∈ ℤ)
3 reprval.s . . . . 5 (𝜑𝑆 ∈ ℕ0)
4 hashreprin.b . . . . 5 (𝜑𝐵 ∈ Fin)
51, 2, 3, 4reprfi 32280 . . . 4 (𝜑 → (𝐵(repr‘𝑆)𝑀) ∈ Fin)
6 inss2 4134 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
76a1i 11 . . . . 5 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
81, 2, 3, 7reprss 32281 . . . 4 (𝜑 → ((𝐴𝐵)(repr‘𝑆)𝑀) ⊆ (𝐵(repr‘𝑆)𝑀))
95, 8ssfid 8887 . . 3 (𝜑 → ((𝐴𝐵)(repr‘𝑆)𝑀) ∈ Fin)
10 1cnd 10811 . . 3 (𝜑 → 1 ∈ ℂ)
11 fsumconst 15335 . . 3 ((((𝐴𝐵)(repr‘𝑆)𝑀) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 = ((♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) · 1))
129, 10, 11syl2anc 587 . 2 (𝜑 → Σ𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 = ((♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) · 1))
1310ralrimivw 3099 . . . 4 (𝜑 → ∀𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 ∈ ℂ)
145olcd 874 . . . 4 (𝜑 → ((𝐵(repr‘𝑆)𝑀) ⊆ (ℤ‘0) ∨ (𝐵(repr‘𝑆)𝑀) ∈ Fin))
15 sumss2 15273 . . . 4 (((((𝐴𝐵)(repr‘𝑆)𝑀) ⊆ (𝐵(repr‘𝑆)𝑀) ∧ ∀𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 ∈ ℂ) ∧ ((𝐵(repr‘𝑆)𝑀) ⊆ (ℤ‘0) ∨ (𝐵(repr‘𝑆)𝑀) ∈ Fin)) → Σ𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)if(𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀), 1, 0))
168, 13, 14, 15syl21anc 838 . . 3 (𝜑 → Σ𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)if(𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀), 1, 0))
171, 2, 3reprinrn 32282 . . . . . . . 8 (𝜑 → (𝑐 ∈ ((𝐵𝐴)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴)))
18 incom 4105 . . . . . . . . . . . 12 (𝐵𝐴) = (𝐴𝐵)
1918oveq1i 7212 . . . . . . . . . . 11 ((𝐵𝐴)(repr‘𝑆)𝑀) = ((𝐴𝐵)(repr‘𝑆)𝑀)
2019eleq2i 2825 . . . . . . . . . 10 (𝑐 ∈ ((𝐵𝐴)(repr‘𝑆)𝑀) ↔ 𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀))
2120bibi1i 342 . . . . . . . . 9 ((𝑐 ∈ ((𝐵𝐴)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴)) ↔ (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴)))
2221imbi2i 339 . . . . . . . 8 ((𝜑 → (𝑐 ∈ ((𝐵𝐴)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴))) ↔ (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴))))
2317, 22mpbi 233 . . . . . . 7 (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴)))
2423baibd 543 . . . . . 6 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ ran 𝑐𝐴))
2524ifbid 4452 . . . . 5 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → if(𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀), 1, 0) = if(ran 𝑐𝐴, 1, 0))
26 nnex 11819 . . . . . . . . 9 ℕ ∈ V
2726a1i 11 . . . . . . . 8 (𝜑 → ℕ ∈ V)
2827ralrimivw 3099 . . . . . . 7 (𝜑 → ∀𝑐 ∈ (𝐵(repr‘𝑆)𝑀)ℕ ∈ V)
2928r19.21bi 3123 . . . . . 6 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → ℕ ∈ V)
30 fzofi 13530 . . . . . . 7 (0..^𝑆) ∈ Fin
3130a1i 11 . . . . . 6 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → (0..^𝑆) ∈ Fin)
32 reprval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ)
3332adantr 484 . . . . . 6 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝐴 ⊆ ℕ)
341adantr 484 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝐵 ⊆ ℕ)
352adantr 484 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑀 ∈ ℤ)
363adantr 484 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑆 ∈ ℕ0)
37 simpr 488 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑐 ∈ (𝐵(repr‘𝑆)𝑀))
3834, 35, 36, 37reprf 32276 . . . . . . 7 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑐:(0..^𝑆)⟶𝐵)
3938, 34fssd 6552 . . . . . 6 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑐:(0..^𝑆)⟶ℕ)
4029, 31, 33, 39prodindf 31675 . . . . 5 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) = if(ran 𝑐𝐴, 1, 0))
4125, 40eqtr4d 2777 . . . 4 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → if(𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀), 1, 0) = ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
4241sumeq2dv 15250 . . 3 (𝜑 → Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)if(𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀), 1, 0) = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
4316, 42eqtrd 2774 . 2 (𝜑 → Σ𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
44 hashcl 13906 . . . . 5 (((𝐴𝐵)(repr‘𝑆)𝑀) ∈ Fin → (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) ∈ ℕ0)
459, 44syl 17 . . . 4 (𝜑 → (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) ∈ ℕ0)
4645nn0cnd 12135 . . 3 (𝜑 → (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) ∈ ℂ)
4746mulid1d 10833 . 2 (𝜑 → ((♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) · 1) = (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)))
4812, 43, 473eqtr3rd 2783 1 (𝜑 → (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2110  wral 3054  Vcvv 3401  cin 3856  wss 3857  ifcif 4429  ran crn 5541  cfv 6369  (class class class)co 7202  Fincfn 8615  cc 10710  0cc0 10712  1c1 10713   · cmul 10717  cn 11813  0cn0 12073  cz 12159  cuz 12421  ..^cfzo 13221  chash 13879  Σcsu 15232  cprod 15448  𝟭cind 31662  reprcrepr 32272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-pm 8500  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-z 12160  df-uz 12422  df-rp 12570  df-fz 13079  df-fzo 13222  df-seq 13558  df-exp 13619  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-clim 15032  df-sum 15233  df-prod 15449  df-ind 31663  df-repr 32273
This theorem is referenced by:  hashrepr  32289  breprexpnat  32298
  Copyright terms: Public domain W3C validator