Proof of Theorem hashreprin
| Step | Hyp | Ref
| Expression |
| 1 | | hashreprin.1 |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ ℕ) |
| 2 | | reprval.m |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 3 | | reprval.s |
. . . . 5
⊢ (𝜑 → 𝑆 ∈
ℕ0) |
| 4 | | hashreprin.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 5 | 1, 2, 3, 4 | reprfi 34572 |
. . . 4
⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) ∈ Fin) |
| 6 | | inss2 4220 |
. . . . . 6
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
| 7 | 6 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐵) |
| 8 | 1, 2, 3, 7 | reprss 34573 |
. . . 4
⊢ (𝜑 → ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) ⊆ (𝐵(repr‘𝑆)𝑀)) |
| 9 | 5, 8 | ssfid 9284 |
. . 3
⊢ (𝜑 → ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) ∈ Fin) |
| 10 | | 1cnd 11239 |
. . 3
⊢ (𝜑 → 1 ∈
ℂ) |
| 11 | | fsumconst 15809 |
. . 3
⊢ ((((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) ∈ Fin ∧ 1 ∈ ℂ) →
Σ𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)1 = ((♯‘((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)) · 1)) |
| 12 | 9, 10, 11 | syl2anc 584 |
. 2
⊢ (𝜑 → Σ𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)1 = ((♯‘((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)) · 1)) |
| 13 | 10 | ralrimivw 3137 |
. . . 4
⊢ (𝜑 → ∀𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)1 ∈ ℂ) |
| 14 | 5 | olcd 874 |
. . . 4
⊢ (𝜑 → ((𝐵(repr‘𝑆)𝑀) ⊆ (ℤ≥‘0)
∨ (𝐵(repr‘𝑆)𝑀) ∈ Fin)) |
| 15 | | sumss2 15745 |
. . . 4
⊢
(((((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) ⊆ (𝐵(repr‘𝑆)𝑀) ∧ ∀𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)1 ∈ ℂ) ∧ ((𝐵(repr‘𝑆)𝑀) ⊆ (ℤ≥‘0)
∨ (𝐵(repr‘𝑆)𝑀) ∈ Fin)) → Σ𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)1 = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)if(𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀), 1, 0)) |
| 16 | 8, 13, 14, 15 | syl21anc 837 |
. . 3
⊢ (𝜑 → Σ𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)1 = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)if(𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀), 1, 0)) |
| 17 | 1, 2, 3 | reprinrn 34574 |
. . . . . . . 8
⊢ (𝜑 → (𝑐 ∈ ((𝐵 ∩ 𝐴)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐 ⊆ 𝐴))) |
| 18 | | incom 4191 |
. . . . . . . . . . . 12
⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) |
| 19 | 18 | oveq1i 7424 |
. . . . . . . . . . 11
⊢ ((𝐵 ∩ 𝐴)(repr‘𝑆)𝑀) = ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) |
| 20 | 19 | eleq2i 2825 |
. . . . . . . . . 10
⊢ (𝑐 ∈ ((𝐵 ∩ 𝐴)(repr‘𝑆)𝑀) ↔ 𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)) |
| 21 | 20 | bibi1i 338 |
. . . . . . . . 9
⊢ ((𝑐 ∈ ((𝐵 ∩ 𝐴)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐 ⊆ 𝐴)) ↔ (𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐 ⊆ 𝐴))) |
| 22 | 21 | imbi2i 336 |
. . . . . . . 8
⊢ ((𝜑 → (𝑐 ∈ ((𝐵 ∩ 𝐴)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐 ⊆ 𝐴))) ↔ (𝜑 → (𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐 ⊆ 𝐴)))) |
| 23 | 17, 22 | mpbi 230 |
. . . . . . 7
⊢ (𝜑 → (𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐 ⊆ 𝐴))) |
| 24 | 23 | baibd 539 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → (𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) ↔ ran 𝑐 ⊆ 𝐴)) |
| 25 | 24 | ifbid 4531 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → if(𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀), 1, 0) = if(ran 𝑐 ⊆ 𝐴, 1, 0)) |
| 26 | | nnex 12255 |
. . . . . . . . 9
⊢ ℕ
∈ V |
| 27 | 26 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ℕ ∈
V) |
| 28 | 27 | ralrimivw 3137 |
. . . . . . 7
⊢ (𝜑 → ∀𝑐 ∈ (𝐵(repr‘𝑆)𝑀)ℕ ∈ V) |
| 29 | 28 | r19.21bi 3238 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → ℕ ∈ V) |
| 30 | | fzofi 13998 |
. . . . . . 7
⊢
(0..^𝑆) ∈
Fin |
| 31 | 30 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → (0..^𝑆) ∈ Fin) |
| 32 | | reprval.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| 33 | 32 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝐴 ⊆ ℕ) |
| 34 | 1 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝐵 ⊆ ℕ) |
| 35 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑀 ∈ ℤ) |
| 36 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑆 ∈
ℕ0) |
| 37 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) |
| 38 | 34, 35, 36, 37 | reprf 34568 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑐:(0..^𝑆)⟶𝐵) |
| 39 | 38, 34 | fssd 6734 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑐:(0..^𝑆)⟶ℕ) |
| 40 | 29, 31, 33, 39 | prodindf 32795 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎)) = if(ran 𝑐 ⊆ 𝐴, 1, 0)) |
| 41 | 25, 40 | eqtr4d 2772 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → if(𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀), 1, 0) = ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
| 42 | 41 | sumeq2dv 15721 |
. . 3
⊢ (𝜑 → Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)if(𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀), 1, 0) = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
| 43 | 16, 42 | eqtrd 2769 |
. 2
⊢ (𝜑 → Σ𝑐 ∈ ((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)1 = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |
| 44 | | hashcl 14378 |
. . . . 5
⊢ (((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀) ∈ Fin → (♯‘((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)) ∈
ℕ0) |
| 45 | 9, 44 | syl 17 |
. . . 4
⊢ (𝜑 → (♯‘((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)) ∈
ℕ0) |
| 46 | 45 | nn0cnd 12573 |
. . 3
⊢ (𝜑 → (♯‘((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)) ∈ ℂ) |
| 47 | 46 | mulridd 11261 |
. 2
⊢ (𝜑 → ((♯‘((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)) · 1) = (♯‘((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀))) |
| 48 | 12, 43, 47 | 3eqtr3rd 2778 |
1
⊢ (𝜑 → (♯‘((𝐴 ∩ 𝐵)(repr‘𝑆)𝑀)) = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐‘𝑎))) |