Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashreprin Structured version   Visualization version   GIF version

Theorem hashreprin 34633
Description: Express a sum of representations over an intersection using a product of the indicator function. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
hashreprin.b (𝜑𝐵 ∈ Fin)
hashreprin.1 (𝜑𝐵 ⊆ ℕ)
Assertion
Ref Expression
hashreprin (𝜑 → (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
Distinct variable groups:   𝐴,𝑐   𝑀,𝑐   𝑆,𝑎,𝑐   𝜑,𝑐   𝐴,𝑎   𝐵,𝑎,𝑐   𝑀,𝑎   𝜑,𝑎

Proof of Theorem hashreprin
StepHypRef Expression
1 hashreprin.1 . . . . 5 (𝜑𝐵 ⊆ ℕ)
2 reprval.m . . . . 5 (𝜑𝑀 ∈ ℤ)
3 reprval.s . . . . 5 (𝜑𝑆 ∈ ℕ0)
4 hashreprin.b . . . . 5 (𝜑𝐵 ∈ Fin)
51, 2, 3, 4reprfi 34629 . . . 4 (𝜑 → (𝐵(repr‘𝑆)𝑀) ∈ Fin)
6 inss2 4185 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
76a1i 11 . . . . 5 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
81, 2, 3, 7reprss 34630 . . . 4 (𝜑 → ((𝐴𝐵)(repr‘𝑆)𝑀) ⊆ (𝐵(repr‘𝑆)𝑀))
95, 8ssfid 9153 . . 3 (𝜑 → ((𝐴𝐵)(repr‘𝑆)𝑀) ∈ Fin)
10 1cnd 11107 . . 3 (𝜑 → 1 ∈ ℂ)
11 fsumconst 15697 . . 3 ((((𝐴𝐵)(repr‘𝑆)𝑀) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 = ((♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) · 1))
129, 10, 11syl2anc 584 . 2 (𝜑 → Σ𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 = ((♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) · 1))
1310ralrimivw 3128 . . . 4 (𝜑 → ∀𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 ∈ ℂ)
145olcd 874 . . . 4 (𝜑 → ((𝐵(repr‘𝑆)𝑀) ⊆ (ℤ‘0) ∨ (𝐵(repr‘𝑆)𝑀) ∈ Fin))
15 sumss2 15633 . . . 4 (((((𝐴𝐵)(repr‘𝑆)𝑀) ⊆ (𝐵(repr‘𝑆)𝑀) ∧ ∀𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 ∈ ℂ) ∧ ((𝐵(repr‘𝑆)𝑀) ⊆ (ℤ‘0) ∨ (𝐵(repr‘𝑆)𝑀) ∈ Fin)) → Σ𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)if(𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀), 1, 0))
168, 13, 14, 15syl21anc 837 . . 3 (𝜑 → Σ𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)if(𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀), 1, 0))
171, 2, 3reprinrn 34631 . . . . . . . 8 (𝜑 → (𝑐 ∈ ((𝐵𝐴)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴)))
18 incom 4156 . . . . . . . . . . . 12 (𝐵𝐴) = (𝐴𝐵)
1918oveq1i 7356 . . . . . . . . . . 11 ((𝐵𝐴)(repr‘𝑆)𝑀) = ((𝐴𝐵)(repr‘𝑆)𝑀)
2019eleq2i 2823 . . . . . . . . . 10 (𝑐 ∈ ((𝐵𝐴)(repr‘𝑆)𝑀) ↔ 𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀))
2120bibi1i 338 . . . . . . . . 9 ((𝑐 ∈ ((𝐵𝐴)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴)) ↔ (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴)))
2221imbi2i 336 . . . . . . . 8 ((𝜑 → (𝑐 ∈ ((𝐵𝐴)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴))) ↔ (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴))))
2317, 22mpbi 230 . . . . . . 7 (𝜑 → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ (𝑐 ∈ (𝐵(repr‘𝑆)𝑀) ∧ ran 𝑐𝐴)))
2423baibd 539 . . . . . 6 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → (𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀) ↔ ran 𝑐𝐴))
2524ifbid 4496 . . . . 5 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → if(𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀), 1, 0) = if(ran 𝑐𝐴, 1, 0))
26 nnex 12131 . . . . . . . . 9 ℕ ∈ V
2726a1i 11 . . . . . . . 8 (𝜑 → ℕ ∈ V)
2827ralrimivw 3128 . . . . . . 7 (𝜑 → ∀𝑐 ∈ (𝐵(repr‘𝑆)𝑀)ℕ ∈ V)
2928r19.21bi 3224 . . . . . 6 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → ℕ ∈ V)
30 fzofi 13881 . . . . . . 7 (0..^𝑆) ∈ Fin
3130a1i 11 . . . . . 6 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → (0..^𝑆) ∈ Fin)
32 reprval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ)
3332adantr 480 . . . . . 6 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝐴 ⊆ ℕ)
341adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝐵 ⊆ ℕ)
352adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑀 ∈ ℤ)
363adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑆 ∈ ℕ0)
37 simpr 484 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑐 ∈ (𝐵(repr‘𝑆)𝑀))
3834, 35, 36, 37reprf 34625 . . . . . . 7 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑐:(0..^𝑆)⟶𝐵)
3938, 34fssd 6668 . . . . . 6 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → 𝑐:(0..^𝑆)⟶ℕ)
4029, 31, 33, 39prodindf 32844 . . . . 5 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) = if(ran 𝑐𝐴, 1, 0))
4125, 40eqtr4d 2769 . . . 4 ((𝜑𝑐 ∈ (𝐵(repr‘𝑆)𝑀)) → if(𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀), 1, 0) = ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
4241sumeq2dv 15609 . . 3 (𝜑 → Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)if(𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀), 1, 0) = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
4316, 42eqtrd 2766 . 2 (𝜑 → Σ𝑐 ∈ ((𝐴𝐵)(repr‘𝑆)𝑀)1 = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
44 hashcl 14263 . . . . 5 (((𝐴𝐵)(repr‘𝑆)𝑀) ∈ Fin → (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) ∈ ℕ0)
459, 44syl 17 . . . 4 (𝜑 → (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) ∈ ℕ0)
4645nn0cnd 12444 . . 3 (𝜑 → (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) ∈ ℂ)
4746mulridd 11129 . 2 (𝜑 → ((♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) · 1) = (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)))
4812, 43, 473eqtr3rd 2775 1 (𝜑 → (♯‘((𝐴𝐵)(repr‘𝑆)𝑀)) = Σ𝑐 ∈ (𝐵(repr‘𝑆)𝑀)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cin 3896  wss 3897  ifcif 4472  ran crn 5615  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11004  0cc0 11006  1c1 11007   · cmul 11011  cn 12125  0cn0 12381  cz 12468  cuz 12732  ..^cfzo 13554  chash 14237  Σcsu 15593  cprod 15810  𝟭cind 32831  reprcrepr 34621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-prod 15811  df-ind 32832  df-repr 34622
This theorem is referenced by:  hashrepr  34638  breprexpnat  34647
  Copyright terms: Public domain W3C validator