Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brab2a | Structured version Visualization version GIF version |
Description: The law of concretion for a binary relation. Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
brab2a.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
brab2a.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜑)} |
Ref | Expression |
---|---|
brab2a | ⊢ (𝐴𝑅𝐵 ↔ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brab2a.2 | . . . 4 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜑)} | |
2 | opabssxp 5640 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜑)} ⊆ (𝐶 × 𝐷) | |
3 | 1, 2 | eqsstri 3935 | . . 3 ⊢ 𝑅 ⊆ (𝐶 × 𝐷) |
4 | 3 | brel 5614 | . 2 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
5 | df-br 5054 | . . . 4 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
6 | 1 | eleq2i 2829 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜑)}) |
7 | 5, 6 | bitri 278 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜑)}) |
8 | brab2a.1 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
9 | 8 | opelopab2a 5416 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜑)} ↔ 𝜓)) |
10 | 7, 9 | syl5bb 286 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝜓)) |
11 | 4, 10 | biadanii 822 | 1 ⊢ (𝐴𝑅𝐵 ↔ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 〈cop 4547 class class class wbr 5053 {copab 5115 × cxp 5549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-xp 5557 |
This theorem is referenced by: fnse 7900 ltxrlt 10903 ltxr 12707 issect 17258 gaorb 18701 ispgp 18981 efgcpbllema 19144 lmbr 22155 isphtpc 23891 vitalilem1 24505 vitalilem2 24506 vitalilem3 24507 tgjustf 26564 iscgrg 26603 ishlg 26693 iscgra 26900 isinag 26929 isleag 26938 mgcval 30984 filnetlem1 34304 bj-brab2a1 35055 prjsprel 40151 |
Copyright terms: Public domain | W3C validator |