Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brab2a | Structured version Visualization version GIF version |
Description: The law of concretion for a binary relation. Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
brab2a.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
brab2a.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜑)} |
Ref | Expression |
---|---|
brab2a | ⊢ (𝐴𝑅𝐵 ↔ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brab2a.2 | . . . 4 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜑)} | |
2 | opabssxp 5669 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜑)} ⊆ (𝐶 × 𝐷) | |
3 | 1, 2 | eqsstri 3951 | . . 3 ⊢ 𝑅 ⊆ (𝐶 × 𝐷) |
4 | 3 | brel 5643 | . 2 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) |
5 | df-br 5071 | . . . 4 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
6 | 1 | eleq2i 2830 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜑)}) |
7 | 5, 6 | bitri 274 | . . 3 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜑)}) |
8 | brab2a.1 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
9 | 8 | opelopab2a 5441 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜑)} ↔ 𝜓)) |
10 | 7, 9 | syl5bb 282 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝜓)) |
11 | 4, 10 | biadanii 818 | 1 ⊢ (𝐴𝑅𝐵 ↔ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 {copab 5132 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 |
This theorem is referenced by: fnse 7945 ltxrlt 10976 ltxr 12780 issect 17382 gaorb 18828 ispgp 19112 efgcpbllema 19275 lmbr 22317 isphtpc 24063 vitalilem1 24677 vitalilem2 24678 vitalilem3 24679 tgjustf 26738 iscgrg 26777 ishlg 26867 iscgra 27074 isinag 27103 isleag 27112 mgcval 31167 filnetlem1 34494 bj-brab2a1 35247 prjsprel 40364 |
Copyright terms: Public domain | W3C validator |