MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brab2a Structured version   Visualization version   GIF version

Theorem brab2a 5366
Description: The law of concretion for a binary relation. Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
brab2a.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
brab2a.2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)}
Assertion
Ref Expression
brab2a (𝐴𝑅𝐵 ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brab2a
StepHypRef Expression
1 brab2a.2 . . . 4 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)}
2 opabssxp 5365 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ⊆ (𝐶 × 𝐷)
31, 2eqsstri 3797 . . 3 𝑅 ⊆ (𝐶 × 𝐷)
43brel 5338 . 2 (𝐴𝑅𝐵 → (𝐴𝐶𝐵𝐷))
5 df-br 4812 . . . 4 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
61eleq2i 2836 . . . 4 (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)})
75, 6bitri 266 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)})
8 brab2a.1 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
98opelopab2a 5153 . . 3 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ↔ 𝜓))
107, 9syl5bb 274 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝜓))
114, 10biadan2 853 1 (𝐴𝑅𝐵 ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  cop 4342   class class class wbr 4811  {copab 4873   × cxp 5277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pr 5064
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-sn 4337  df-pr 4339  df-op 4343  df-br 4812  df-opab 4874  df-xp 5285
This theorem is referenced by:  fnse  7500  ltxrlt  10366  ltxr  12154  issect  16692  gaorb  18017  ispgp  18285  efgcpbllema  18447  lmbr  21356  isphtpc  23086  vitalilem1  23680  vitalilem2  23681  vitalilem3  23682  iscgrg  25712  ishlg  25802  iscgra  26006  isinag  26034  isleag  26038  filnetlem1  32837
  Copyright terms: Public domain W3C validator