MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brab2a Structured version   Visualization version   GIF version

Theorem brab2a 5753
Description: The law of concretion for a binary relation. Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
brab2a.1 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
brab2a.2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)}
Assertion
Ref Expression
brab2a (𝐴𝑅𝐵 ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brab2a
StepHypRef Expression
1 brab2a.2 . . . 4 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)}
2 opabssxp 5752 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ⊆ (𝐶 × 𝐷)
31, 2eqsstri 4010 . . 3 𝑅 ⊆ (𝐶 × 𝐷)
43brel 5724 . 2 (𝐴𝑅𝐵 → (𝐴𝐶𝐵𝐷))
5 df-br 5125 . . . 4 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
61eleq2i 2827 . . . 4 (⟨𝐴, 𝐵⟩ ∈ 𝑅 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)})
75, 6bitri 275 . . 3 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)})
8 brab2a.1 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
98opelopab2a 5515 . . 3 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)} ↔ 𝜓))
107, 9bitrid 283 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝜓))
114, 10biadanii 821 1 (𝐴𝑅𝐵 ↔ ((𝐴𝐶𝐵𝐷) ∧ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cop 4612   class class class wbr 5124  {copab 5186   × cxp 5657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665
This theorem is referenced by:  fnse  8137  ltxrlt  11310  ltxr  13136  issect  17771  gaorb  19295  ispgp  19578  efgcpbllema  19740  lmbr  23201  isphtpc  24949  vitalilem1  25566  vitalilem2  25567  vitalilem3  25568  tgjustf  28457  iscgrg  28496  ishlg  28586  iscgra  28793  isinag  28822  isleag  28831  mgcval  32972  filnetlem1  36401  weiunlem1  36485  bj-brab2a1  37172  prjsprel  42594
  Copyright terms: Public domain W3C validator