| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq12d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016.) |
| Ref | Expression |
|---|---|
| imaeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| imaeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| imaeq12d | ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | imaeq1d 6033 | . 2 ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
| 3 | imaeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | imaeq2d 6034 | . 2 ⊢ (𝜑 → (𝐵 “ 𝐶) = (𝐵 “ 𝐷)) |
| 5 | 2, 4 | eqtrd 2765 | 1 ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: csbima12 6053 predeq123 6278 vdwpc 16958 dmdprd 19937 isunit 20289 qtopval 23589 limciun 25802 ig1pval 26088 ispth 29658 irngval 33687 qqhval 33969 eulerpartgbij 34370 orvcval 34456 ballotlemrval 34516 ballotlemrinv0 34531 ballotlemrinv 34532 mthmval 35569 bj-projeq 36987 itg2addnclem2 37673 islmodfg 43065 heeq12 43772 isgrim 47886 imaf1hom 49101 imaidfu 49103 imasubc 49144 imassc 49146 imaid 49147 |
| Copyright terms: Public domain | W3C validator |