| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq12d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016.) |
| Ref | Expression |
|---|---|
| imaeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| imaeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| imaeq12d | ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | imaeq1d 6014 | . 2 ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
| 3 | imaeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | imaeq2d 6015 | . 2 ⊢ (𝜑 → (𝐵 “ 𝐶) = (𝐵 “ 𝐷)) |
| 5 | 2, 4 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 “ cima 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 |
| This theorem is referenced by: csbima12 6034 predeq123 6254 vdwpc 16910 dmdprd 19897 isunit 20276 qtopval 23598 limciun 25811 ig1pval 26097 ispth 29684 irngval 33656 qqhval 33938 eulerpartgbij 34339 orvcval 34425 ballotlemrval 34485 ballotlemrinv0 34500 ballotlemrinv 34501 mthmval 35547 bj-projeq 36965 itg2addnclem2 37651 islmodfg 43042 heeq12 43749 isgrim 47867 imaf1hom 49094 imaidfu 49096 imasubc 49137 imassc 49139 imaid 49140 |
| Copyright terms: Public domain | W3C validator |