MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeq12d Structured version   Visualization version   GIF version

Theorem imaeq12d 6090
Description: Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016.)
Hypotheses
Ref Expression
imaeq1d.1 (𝜑𝐴 = 𝐵)
imaeq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
imaeq12d (𝜑 → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem imaeq12d
StepHypRef Expression
1 imaeq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21imaeq1d 6088 . 2 (𝜑 → (𝐴𝐶) = (𝐵𝐶))
3 imaeq12d.2 . . 3 (𝜑𝐶 = 𝐷)
43imaeq2d 6089 . 2 (𝜑 → (𝐵𝐶) = (𝐵𝐷))
52, 4eqtrd 2780 1 (𝜑 → (𝐴𝐶) = (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cima 5703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  csbima12  6108  predeq123  6333  vdwpc  17027  dmdprd  20042  isunit  20399  qtopval  23724  limciun  25949  ig1pval  26235  ispth  29759  irngval  33685  qqhval  33920  eulerpartgbij  34337  orvcval  34422  ballotlemrval  34482  ballotlemrinv0  34497  ballotlemrinv  34498  mthmval  35543  bj-projeq  36958  itg2addnclem2  37632  islmodfg  43026  heeq12  43738  isgrim  47752
  Copyright terms: Public domain W3C validator