![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaeq12d | Structured version Visualization version GIF version |
Description: Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016.) |
Ref | Expression |
---|---|
imaeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
imaeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
imaeq12d | ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | imaeq1d 6088 | . 2 ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) |
3 | imaeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | imaeq2d 6089 | . 2 ⊢ (𝜑 → (𝐵 “ 𝐶) = (𝐵 “ 𝐷)) |
5 | 2, 4 | eqtrd 2780 | 1 ⊢ (𝜑 → (𝐴 “ 𝐶) = (𝐵 “ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: csbima12 6108 predeq123 6333 vdwpc 17027 dmdprd 20042 isunit 20399 qtopval 23724 limciun 25949 ig1pval 26235 ispth 29759 irngval 33685 qqhval 33920 eulerpartgbij 34337 orvcval 34422 ballotlemrval 34482 ballotlemrinv0 34497 ballotlemrinv 34498 mthmval 35543 bj-projeq 36958 itg2addnclem2 37632 islmodfg 43026 heeq12 43738 isgrim 47752 |
Copyright terms: Public domain | W3C validator |