| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj602 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the pred function constant. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj602 | ⊢ (𝑋 = 𝑌 → pred(𝑋, 𝐴, 𝑅) = pred(𝑌, 𝐴, 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5111 | . . 3 ⊢ (𝑋 = 𝑌 → (𝑦𝑅𝑋 ↔ 𝑦𝑅𝑌)) | |
| 2 | 1 | rabbidv 3413 | . 2 ⊢ (𝑋 = 𝑌 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑌}) |
| 3 | df-bnj14 34679 | . 2 ⊢ pred(𝑋, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} | |
| 4 | df-bnj14 34679 | . 2 ⊢ pred(𝑌, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑌} | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ (𝑋 = 𝑌 → pred(𝑋, 𝐴, 𝑅) = pred(𝑌, 𝐴, 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {crab 3405 class class class wbr 5107 predc-bnj14 34678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-bnj14 34679 |
| This theorem is referenced by: bnj601 34910 bnj852 34911 bnj18eq1 34917 bnj938 34927 bnj1125 34982 bnj1148 34986 bnj1318 35015 bnj1442 35039 bnj1450 35040 bnj1452 35042 bnj1463 35045 bnj1529 35060 |
| Copyright terms: Public domain | W3C validator |