Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj602 Structured version   Visualization version   GIF version

Theorem bnj602 34891
Description: Equality theorem for the pred function constant. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj602 (𝑋 = 𝑌 → pred(𝑋, 𝐴, 𝑅) = pred(𝑌, 𝐴, 𝑅))

Proof of Theorem bnj602
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq2 5170 . . 3 (𝑋 = 𝑌 → (𝑦𝑅𝑋𝑦𝑅𝑌))
21rabbidv 3451 . 2 (𝑋 = 𝑌 → {𝑦𝐴𝑦𝑅𝑋} = {𝑦𝐴𝑦𝑅𝑌})
3 df-bnj14 34665 . 2 pred(𝑋, 𝐴, 𝑅) = {𝑦𝐴𝑦𝑅𝑋}
4 df-bnj14 34665 . 2 pred(𝑌, 𝐴, 𝑅) = {𝑦𝐴𝑦𝑅𝑌}
52, 3, 43eqtr4g 2805 1 (𝑋 = 𝑌 → pred(𝑋, 𝐴, 𝑅) = pred(𝑌, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  {crab 3443   class class class wbr 5166   predc-bnj14 34664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-bnj14 34665
This theorem is referenced by:  bnj601  34896  bnj852  34897  bnj18eq1  34903  bnj938  34913  bnj1125  34968  bnj1148  34972  bnj1318  35001  bnj1442  35025  bnj1450  35026  bnj1452  35028  bnj1463  35031  bnj1529  35046
  Copyright terms: Public domain W3C validator