Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj602 | Structured version Visualization version GIF version |
Description: Equality theorem for the pred function constant. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj602 | ⊢ (𝑋 = 𝑌 → pred(𝑋, 𝐴, 𝑅) = pred(𝑌, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5040 | . . 3 ⊢ (𝑋 = 𝑌 → (𝑦𝑅𝑋 ↔ 𝑦𝑅𝑌)) | |
2 | 1 | rabbidv 3392 | . 2 ⊢ (𝑋 = 𝑌 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑌}) |
3 | df-bnj14 32199 | . 2 ⊢ pred(𝑋, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} | |
4 | df-bnj14 32199 | . 2 ⊢ pred(𝑌, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑌} | |
5 | 2, 3, 4 | 3eqtr4g 2818 | 1 ⊢ (𝑋 = 𝑌 → pred(𝑋, 𝐴, 𝑅) = pred(𝑌, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 {crab 3074 class class class wbr 5036 predc-bnj14 32198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-rab 3079 df-v 3411 df-un 3865 df-sn 4526 df-pr 4528 df-op 4532 df-br 5037 df-bnj14 32199 |
This theorem is referenced by: bnj601 32432 bnj852 32433 bnj18eq1 32439 bnj938 32449 bnj1125 32504 bnj1148 32508 bnj1318 32537 bnj1442 32561 bnj1450 32562 bnj1452 32564 bnj1463 32567 bnj1529 32582 |
Copyright terms: Public domain | W3C validator |