Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj602 Structured version   Visualization version   GIF version

Theorem bnj602 34946
Description: Equality theorem for the pred function constant. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj602 (𝑋 = 𝑌 → pred(𝑋, 𝐴, 𝑅) = pred(𝑌, 𝐴, 𝑅))

Proof of Theorem bnj602
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq2 5123 . . 3 (𝑋 = 𝑌 → (𝑦𝑅𝑋𝑦𝑅𝑌))
21rabbidv 3423 . 2 (𝑋 = 𝑌 → {𝑦𝐴𝑦𝑅𝑋} = {𝑦𝐴𝑦𝑅𝑌})
3 df-bnj14 34720 . 2 pred(𝑋, 𝐴, 𝑅) = {𝑦𝐴𝑦𝑅𝑋}
4 df-bnj14 34720 . 2 pred(𝑌, 𝐴, 𝑅) = {𝑦𝐴𝑦𝑅𝑌}
52, 3, 43eqtr4g 2795 1 (𝑋 = 𝑌 → pred(𝑋, 𝐴, 𝑅) = pred(𝑌, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  {crab 3415   class class class wbr 5119   predc-bnj14 34719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-bnj14 34720
This theorem is referenced by:  bnj601  34951  bnj852  34952  bnj18eq1  34958  bnj938  34968  bnj1125  35023  bnj1148  35027  bnj1318  35056  bnj1442  35080  bnj1450  35081  bnj1452  35083  bnj1463  35086  bnj1529  35101
  Copyright terms: Public domain W3C validator