![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj602 | Structured version Visualization version GIF version |
Description: Equality theorem for the pred function constant. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj602 | ⊢ (𝑋 = 𝑌 → pred(𝑋, 𝐴, 𝑅) = pred(𝑌, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5170 | . . 3 ⊢ (𝑋 = 𝑌 → (𝑦𝑅𝑋 ↔ 𝑦𝑅𝑌)) | |
2 | 1 | rabbidv 3451 | . 2 ⊢ (𝑋 = 𝑌 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑌}) |
3 | df-bnj14 34665 | . 2 ⊢ pred(𝑋, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} | |
4 | df-bnj14 34665 | . 2 ⊢ pred(𝑌, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑌} | |
5 | 2, 3, 4 | 3eqtr4g 2805 | 1 ⊢ (𝑋 = 𝑌 → pred(𝑋, 𝐴, 𝑅) = pred(𝑌, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 {crab 3443 class class class wbr 5166 predc-bnj14 34664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-bnj14 34665 |
This theorem is referenced by: bnj601 34896 bnj852 34897 bnj18eq1 34903 bnj938 34913 bnj1125 34968 bnj1148 34972 bnj1318 35001 bnj1442 35025 bnj1450 35026 bnj1452 35028 bnj1463 35031 bnj1529 35046 |
Copyright terms: Public domain | W3C validator |