![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj602 | Structured version Visualization version GIF version |
Description: Equality theorem for the pred function constant. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj602 | ⊢ (𝑋 = 𝑌 → pred(𝑋, 𝐴, 𝑅) = pred(𝑌, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5114 | . . 3 ⊢ (𝑋 = 𝑌 → (𝑦𝑅𝑋 ↔ 𝑦𝑅𝑌)) | |
2 | 1 | rabbidv 3418 | . 2 ⊢ (𝑋 = 𝑌 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑌}) |
3 | df-bnj14 33341 | . 2 ⊢ pred(𝑋, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} | |
4 | df-bnj14 33341 | . 2 ⊢ pred(𝑌, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑌} | |
5 | 2, 3, 4 | 3eqtr4g 2802 | 1 ⊢ (𝑋 = 𝑌 → pred(𝑋, 𝐴, 𝑅) = pred(𝑌, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 {crab 3410 class class class wbr 5110 predc-bnj14 33340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-br 5111 df-bnj14 33341 |
This theorem is referenced by: bnj601 33572 bnj852 33573 bnj18eq1 33579 bnj938 33589 bnj1125 33644 bnj1148 33648 bnj1318 33677 bnj1442 33701 bnj1450 33702 bnj1452 33704 bnj1463 33707 bnj1529 33722 |
Copyright terms: Public domain | W3C validator |