![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj602 | Structured version Visualization version GIF version |
Description: Equality theorem for the pred function constant. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj602 | ⊢ (𝑋 = 𝑌 → pred(𝑋, 𝐴, 𝑅) = pred(𝑌, 𝐴, 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5152 | . . 3 ⊢ (𝑋 = 𝑌 → (𝑦𝑅𝑋 ↔ 𝑦𝑅𝑌)) | |
2 | 1 | rabbidv 3441 | . 2 ⊢ (𝑋 = 𝑌 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑌}) |
3 | df-bnj14 34682 | . 2 ⊢ pred(𝑋, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} | |
4 | df-bnj14 34682 | . 2 ⊢ pred(𝑌, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑌} | |
5 | 2, 3, 4 | 3eqtr4g 2800 | 1 ⊢ (𝑋 = 𝑌 → pred(𝑋, 𝐴, 𝑅) = pred(𝑌, 𝐴, 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 {crab 3433 class class class wbr 5148 predc-bnj14 34681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-bnj14 34682 |
This theorem is referenced by: bnj601 34913 bnj852 34914 bnj18eq1 34920 bnj938 34930 bnj1125 34985 bnj1148 34989 bnj1318 35018 bnj1442 35042 bnj1450 35043 bnj1452 35045 bnj1463 35048 bnj1529 35063 |
Copyright terms: Public domain | W3C validator |