| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1384 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj60 35059. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1384.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| bnj1384.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1384.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj1384.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
| bnj1384.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
| bnj1384.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
| bnj1384.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
| bnj1384.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
| bnj1384.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
| bnj1384.10 | ⊢ 𝑃 = ∪ 𝐻 |
| Ref | Expression |
|---|---|
| bnj1384 | ⊢ (𝑅 FrSe 𝐴 → Fun 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1384.1 | . . . . 5 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
| 2 | bnj1384.2 | . . . . 5 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 3 | bnj1384.3 | . . . . 5 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
| 4 | bnj1384.4 | . . . . 5 ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) | |
| 5 | bnj1384.5 | . . . . 5 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | |
| 6 | bnj1384.6 | . . . . 5 ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | |
| 7 | bnj1384.7 | . . . . 5 ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | |
| 8 | bnj1384.8 | . . . . 5 ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) | |
| 9 | bnj1384.9 | . . . . 5 ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
| 10 | bnj1384.10 | . . . . 5 ⊢ 𝑃 = ∪ 𝐻 | |
| 11 | 1, 2, 3, 4, 8 | bnj1373 35027 | . . . . 5 ⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | bnj1371 35026 | . . . 4 ⊢ (𝑓 ∈ 𝐻 → Fun 𝑓) |
| 13 | 12 | rgen 3047 | . . 3 ⊢ ∀𝑓 ∈ 𝐻 Fun 𝑓 |
| 14 | id 22 | . . . . . 6 ⊢ (𝑅 FrSe 𝐴 → 𝑅 FrSe 𝐴) | |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | bnj1374 35028 | . . . . . 6 ⊢ (𝑓 ∈ 𝐻 → 𝑓 ∈ 𝐶) |
| 16 | nfab1 2894 | . . . . . . . . . 10 ⊢ Ⅎ𝑓{𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
| 17 | 9, 16 | nfcxfr 2890 | . . . . . . . . 9 ⊢ Ⅎ𝑓𝐻 |
| 18 | 17 | nfcri 2884 | . . . . . . . 8 ⊢ Ⅎ𝑓 𝑔 ∈ 𝐻 |
| 19 | nfab1 2894 | . . . . . . . . . 10 ⊢ Ⅎ𝑓{𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
| 20 | 3, 19 | nfcxfr 2890 | . . . . . . . . 9 ⊢ Ⅎ𝑓𝐶 |
| 21 | 20 | nfcri 2884 | . . . . . . . 8 ⊢ Ⅎ𝑓 𝑔 ∈ 𝐶 |
| 22 | 18, 21 | nfim 1896 | . . . . . . 7 ⊢ Ⅎ𝑓(𝑔 ∈ 𝐻 → 𝑔 ∈ 𝐶) |
| 23 | eleq1w 2812 | . . . . . . . 8 ⊢ (𝑓 = 𝑔 → (𝑓 ∈ 𝐻 ↔ 𝑔 ∈ 𝐻)) | |
| 24 | eleq1w 2812 | . . . . . . . 8 ⊢ (𝑓 = 𝑔 → (𝑓 ∈ 𝐶 ↔ 𝑔 ∈ 𝐶)) | |
| 25 | 23, 24 | imbi12d 344 | . . . . . . 7 ⊢ (𝑓 = 𝑔 → ((𝑓 ∈ 𝐻 → 𝑓 ∈ 𝐶) ↔ (𝑔 ∈ 𝐻 → 𝑔 ∈ 𝐶))) |
| 26 | 22, 25, 15 | chvarfv 2241 | . . . . . 6 ⊢ (𝑔 ∈ 𝐻 → 𝑔 ∈ 𝐶) |
| 27 | eqid 2730 | . . . . . . 7 ⊢ (dom 𝑓 ∩ dom 𝑔) = (dom 𝑓 ∩ dom 𝑔) | |
| 28 | 1, 2, 3, 27 | bnj1326 35023 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑓 ∈ 𝐶 ∧ 𝑔 ∈ 𝐶) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) |
| 29 | 14, 15, 26, 28 | syl3an 1160 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑓 ∈ 𝐻 ∧ 𝑔 ∈ 𝐻) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) |
| 30 | 29 | 3expib 1122 | . . . 4 ⊢ (𝑅 FrSe 𝐴 → ((𝑓 ∈ 𝐻 ∧ 𝑔 ∈ 𝐻) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))) |
| 31 | 30 | ralrimivv 3179 | . . 3 ⊢ (𝑅 FrSe 𝐴 → ∀𝑓 ∈ 𝐻 ∀𝑔 ∈ 𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) |
| 32 | biid 261 | . . . 4 ⊢ (∀𝑓 ∈ 𝐻 Fun 𝑓 ↔ ∀𝑓 ∈ 𝐻 Fun 𝑓) | |
| 33 | biid 261 | . . . 4 ⊢ ((∀𝑓 ∈ 𝐻 Fun 𝑓 ∧ ∀𝑓 ∈ 𝐻 ∀𝑔 ∈ 𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) ↔ (∀𝑓 ∈ 𝐻 Fun 𝑓 ∧ ∀𝑓 ∈ 𝐻 ∀𝑔 ∈ 𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))) | |
| 34 | 9 | bnj1317 34818 | . . . 4 ⊢ (𝑧 ∈ 𝐻 → ∀𝑓 𝑧 ∈ 𝐻) |
| 35 | 32, 27, 33, 34 | bnj1386 34830 | . . 3 ⊢ ((∀𝑓 ∈ 𝐻 Fun 𝑓 ∧ ∀𝑓 ∈ 𝐻 ∀𝑔 ∈ 𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) → Fun ∪ 𝐻) |
| 36 | 13, 31, 35 | sylancr 587 | . 2 ⊢ (𝑅 FrSe 𝐴 → Fun ∪ 𝐻) |
| 37 | 10 | funeqi 6540 | . 2 ⊢ (Fun 𝑃 ↔ Fun ∪ 𝐻) |
| 38 | 36, 37 | sylibr 234 | 1 ⊢ (𝑅 FrSe 𝐴 → Fun 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2708 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 {crab 3408 [wsbc 3756 ∪ cun 3915 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 {csn 4592 〈cop 4598 ∪ cuni 4874 class class class wbr 5110 dom cdm 5641 ↾ cres 5643 Fun wfun 6508 Fn wfn 6509 ‘cfv 6514 predc-bnj14 34685 FrSe w-bnj15 34689 trClc-bnj18 34691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-reg 9552 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-bnj17 34684 df-bnj14 34686 df-bnj13 34688 df-bnj15 34690 df-bnj18 34692 df-bnj19 34694 |
| This theorem is referenced by: bnj1312 35055 |
| Copyright terms: Public domain | W3C validator |