Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1384 Structured version   Visualization version   GIF version

Theorem bnj1384 33012
Description: Technical lemma for bnj60 33042. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1384.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1384.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1384.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1384.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1384.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1384.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1384.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1384.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1384.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1384.10 𝑃 = 𝐻
Assertion
Ref Expression
bnj1384 (𝑅 FrSe 𝐴 → Fun 𝑃)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝑦,𝐶   𝐺,𝑑,𝑓   𝑅,𝑑,𝑓,𝑥   𝑦,𝑓,𝑥
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑓,𝑑)   𝐴(𝑦)   𝐵(𝑥,𝑦,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑓,𝑑)   𝑅(𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑓,𝑑)

Proof of Theorem bnj1384
Dummy variables 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1384.1 . . . . 5 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
2 bnj1384.2 . . . . 5 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
3 bnj1384.3 . . . . 5 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
4 bnj1384.4 . . . . 5 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
5 bnj1384.5 . . . . 5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
6 bnj1384.6 . . . . 5 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
7 bnj1384.7 . . . . 5 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
8 bnj1384.8 . . . . 5 (𝜏′[𝑦 / 𝑥]𝜏)
9 bnj1384.9 . . . . 5 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
10 bnj1384.10 . . . . 5 𝑃 = 𝐻
111, 2, 3, 4, 8bnj1373 33010 . . . . 5 (𝜏′ ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11bnj1371 33009 . . . 4 (𝑓𝐻 → Fun 𝑓)
1312rgen 3074 . . 3 𝑓𝐻 Fun 𝑓
14 id 22 . . . . . 6 (𝑅 FrSe 𝐴𝑅 FrSe 𝐴)
151, 2, 3, 4, 5, 6, 7, 8, 9bnj1374 33011 . . . . . 6 (𝑓𝐻𝑓𝐶)
16 nfab1 2909 . . . . . . . . . 10 𝑓{𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
179, 16nfcxfr 2905 . . . . . . . . 9 𝑓𝐻
1817nfcri 2894 . . . . . . . 8 𝑓 𝑔𝐻
19 nfab1 2909 . . . . . . . . . 10 𝑓{𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
203, 19nfcxfr 2905 . . . . . . . . 9 𝑓𝐶
2120nfcri 2894 . . . . . . . 8 𝑓 𝑔𝐶
2218, 21nfim 1899 . . . . . . 7 𝑓(𝑔𝐻𝑔𝐶)
23 eleq1w 2821 . . . . . . . 8 (𝑓 = 𝑔 → (𝑓𝐻𝑔𝐻))
24 eleq1w 2821 . . . . . . . 8 (𝑓 = 𝑔 → (𝑓𝐶𝑔𝐶))
2523, 24imbi12d 345 . . . . . . 7 (𝑓 = 𝑔 → ((𝑓𝐻𝑓𝐶) ↔ (𝑔𝐻𝑔𝐶)))
2622, 25, 15chvarfv 2233 . . . . . 6 (𝑔𝐻𝑔𝐶)
27 eqid 2738 . . . . . . 7 (dom 𝑓 ∩ dom 𝑔) = (dom 𝑓 ∩ dom 𝑔)
281, 2, 3, 27bnj1326 33006 . . . . . 6 ((𝑅 FrSe 𝐴𝑓𝐶𝑔𝐶) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))
2914, 15, 26, 28syl3an 1159 . . . . 5 ((𝑅 FrSe 𝐴𝑓𝐻𝑔𝐻) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))
30293expib 1121 . . . 4 (𝑅 FrSe 𝐴 → ((𝑓𝐻𝑔𝐻) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))))
3130ralrimivv 3122 . . 3 (𝑅 FrSe 𝐴 → ∀𝑓𝐻𝑔𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))
32 biid 260 . . . 4 (∀𝑓𝐻 Fun 𝑓 ↔ ∀𝑓𝐻 Fun 𝑓)
33 biid 260 . . . 4 ((∀𝑓𝐻 Fun 𝑓 ∧ ∀𝑓𝐻𝑔𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) ↔ (∀𝑓𝐻 Fun 𝑓 ∧ ∀𝑓𝐻𝑔𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))))
349bnj1317 32801 . . . 4 (𝑧𝐻 → ∀𝑓 𝑧𝐻)
3532, 27, 33, 34bnj1386 32813 . . 3 ((∀𝑓𝐻 Fun 𝑓 ∧ ∀𝑓𝐻𝑔𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) → Fun 𝐻)
3613, 31, 35sylancr 587 . 2 (𝑅 FrSe 𝐴 → Fun 𝐻)
3710funeqi 6455 . 2 (Fun 𝑃 ↔ Fun 𝐻)
3836, 37sylibr 233 1 (𝑅 FrSe 𝐴 → Fun 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wne 2943  wral 3064  wrex 3065  {crab 3068  [wsbc 3716  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561  cop 4567   cuni 4839   class class class wbr 5074  dom cdm 5589  cres 5591  Fun wfun 6427   Fn wfn 6428  cfv 6433   predc-bnj14 32667   FrSe w-bnj15 32671   trClc-bnj18 32673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-bnj17 32666  df-bnj14 32668  df-bnj13 32670  df-bnj15 32672  df-bnj18 32674  df-bnj19 32676
This theorem is referenced by:  bnj1312  33038
  Copyright terms: Public domain W3C validator