Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1384 Structured version   Visualization version   GIF version

Theorem bnj1384 32912
Description: Technical lemma for bnj60 32942. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1384.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1384.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1384.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1384.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1384.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1384.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1384.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1384.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1384.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1384.10 𝑃 = 𝐻
Assertion
Ref Expression
bnj1384 (𝑅 FrSe 𝐴 → Fun 𝑃)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝑦,𝐶   𝐺,𝑑,𝑓   𝑅,𝑑,𝑓,𝑥   𝑦,𝑓,𝑥
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑓,𝑑)   𝐴(𝑦)   𝐵(𝑥,𝑦,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑓,𝑑)   𝑅(𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑓,𝑑)

Proof of Theorem bnj1384
Dummy variables 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1384.1 . . . . 5 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
2 bnj1384.2 . . . . 5 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
3 bnj1384.3 . . . . 5 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
4 bnj1384.4 . . . . 5 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
5 bnj1384.5 . . . . 5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
6 bnj1384.6 . . . . 5 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
7 bnj1384.7 . . . . 5 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
8 bnj1384.8 . . . . 5 (𝜏′[𝑦 / 𝑥]𝜏)
9 bnj1384.9 . . . . 5 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
10 bnj1384.10 . . . . 5 𝑃 = 𝐻
111, 2, 3, 4, 8bnj1373 32910 . . . . 5 (𝜏′ ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11bnj1371 32909 . . . 4 (𝑓𝐻 → Fun 𝑓)
1312rgen 3073 . . 3 𝑓𝐻 Fun 𝑓
14 id 22 . . . . . 6 (𝑅 FrSe 𝐴𝑅 FrSe 𝐴)
151, 2, 3, 4, 5, 6, 7, 8, 9bnj1374 32911 . . . . . 6 (𝑓𝐻𝑓𝐶)
16 nfab1 2908 . . . . . . . . . 10 𝑓{𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
179, 16nfcxfr 2904 . . . . . . . . 9 𝑓𝐻
1817nfcri 2893 . . . . . . . 8 𝑓 𝑔𝐻
19 nfab1 2908 . . . . . . . . . 10 𝑓{𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
203, 19nfcxfr 2904 . . . . . . . . 9 𝑓𝐶
2120nfcri 2893 . . . . . . . 8 𝑓 𝑔𝐶
2218, 21nfim 1900 . . . . . . 7 𝑓(𝑔𝐻𝑔𝐶)
23 eleq1w 2821 . . . . . . . 8 (𝑓 = 𝑔 → (𝑓𝐻𝑔𝐻))
24 eleq1w 2821 . . . . . . . 8 (𝑓 = 𝑔 → (𝑓𝐶𝑔𝐶))
2523, 24imbi12d 344 . . . . . . 7 (𝑓 = 𝑔 → ((𝑓𝐻𝑓𝐶) ↔ (𝑔𝐻𝑔𝐶)))
2622, 25, 15chvarfv 2236 . . . . . 6 (𝑔𝐻𝑔𝐶)
27 eqid 2738 . . . . . . 7 (dom 𝑓 ∩ dom 𝑔) = (dom 𝑓 ∩ dom 𝑔)
281, 2, 3, 27bnj1326 32906 . . . . . 6 ((𝑅 FrSe 𝐴𝑓𝐶𝑔𝐶) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))
2914, 15, 26, 28syl3an 1158 . . . . 5 ((𝑅 FrSe 𝐴𝑓𝐻𝑔𝐻) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))
30293expib 1120 . . . 4 (𝑅 FrSe 𝐴 → ((𝑓𝐻𝑔𝐻) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))))
3130ralrimivv 3113 . . 3 (𝑅 FrSe 𝐴 → ∀𝑓𝐻𝑔𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))
32 biid 260 . . . 4 (∀𝑓𝐻 Fun 𝑓 ↔ ∀𝑓𝐻 Fun 𝑓)
33 biid 260 . . . 4 ((∀𝑓𝐻 Fun 𝑓 ∧ ∀𝑓𝐻𝑔𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) ↔ (∀𝑓𝐻 Fun 𝑓 ∧ ∀𝑓𝐻𝑔𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))))
349bnj1317 32701 . . . 4 (𝑧𝐻 → ∀𝑓 𝑧𝐻)
3532, 27, 33, 34bnj1386 32713 . . 3 ((∀𝑓𝐻 Fun 𝑓 ∧ ∀𝑓𝐻𝑔𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) → Fun 𝐻)
3613, 31, 35sylancr 586 . 2 (𝑅 FrSe 𝐴 → Fun 𝐻)
3710funeqi 6439 . 2 (Fun 𝑃 ↔ Fun 𝐻)
3836, 37sylibr 233 1 (𝑅 FrSe 𝐴 → Fun 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  {crab 3067  [wsbc 3711  cun 3881  cin 3882  wss 3883  c0 4253  {csn 4558  cop 4564   cuni 4836   class class class wbr 5070  dom cdm 5580  cres 5582  Fun wfun 6412   Fn wfn 6413  cfv 6418   predc-bnj14 32567   FrSe w-bnj15 32571   trClc-bnj18 32573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-reg 9281  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-bnj17 32566  df-bnj14 32568  df-bnj13 32570  df-bnj15 32572  df-bnj18 32574  df-bnj19 32576
This theorem is referenced by:  bnj1312  32938
  Copyright terms: Public domain W3C validator