![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1384 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 34371. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1384.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1384.2 | ⊢ 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩ |
bnj1384.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1384.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
bnj1384.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
bnj1384.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
bnj1384.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
bnj1384.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
bnj1384.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
bnj1384.10 | ⊢ 𝑃 = ∪ 𝐻 |
Ref | Expression |
---|---|
bnj1384 | ⊢ (𝑅 FrSe 𝐴 → Fun 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1384.1 | . . . . 5 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
2 | bnj1384.2 | . . . . 5 ⊢ 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩ | |
3 | bnj1384.3 | . . . . 5 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
4 | bnj1384.4 | . . . . 5 ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) | |
5 | bnj1384.5 | . . . . 5 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | |
6 | bnj1384.6 | . . . . 5 ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | |
7 | bnj1384.7 | . . . . 5 ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | |
8 | bnj1384.8 | . . . . 5 ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) | |
9 | bnj1384.9 | . . . . 5 ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
10 | bnj1384.10 | . . . . 5 ⊢ 𝑃 = ∪ 𝐻 | |
11 | 1, 2, 3, 4, 8 | bnj1373 34339 | . . . . 5 ⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | bnj1371 34338 | . . . 4 ⊢ (𝑓 ∈ 𝐻 → Fun 𝑓) |
13 | 12 | rgen 3061 | . . 3 ⊢ ∀𝑓 ∈ 𝐻 Fun 𝑓 |
14 | id 22 | . . . . . 6 ⊢ (𝑅 FrSe 𝐴 → 𝑅 FrSe 𝐴) | |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | bnj1374 34340 | . . . . . 6 ⊢ (𝑓 ∈ 𝐻 → 𝑓 ∈ 𝐶) |
16 | nfab1 2903 | . . . . . . . . . 10 ⊢ Ⅎ𝑓{𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
17 | 9, 16 | nfcxfr 2899 | . . . . . . . . 9 ⊢ Ⅎ𝑓𝐻 |
18 | 17 | nfcri 2888 | . . . . . . . 8 ⊢ Ⅎ𝑓 𝑔 ∈ 𝐻 |
19 | nfab1 2903 | . . . . . . . . . 10 ⊢ Ⅎ𝑓{𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
20 | 3, 19 | nfcxfr 2899 | . . . . . . . . 9 ⊢ Ⅎ𝑓𝐶 |
21 | 20 | nfcri 2888 | . . . . . . . 8 ⊢ Ⅎ𝑓 𝑔 ∈ 𝐶 |
22 | 18, 21 | nfim 1897 | . . . . . . 7 ⊢ Ⅎ𝑓(𝑔 ∈ 𝐻 → 𝑔 ∈ 𝐶) |
23 | eleq1w 2814 | . . . . . . . 8 ⊢ (𝑓 = 𝑔 → (𝑓 ∈ 𝐻 ↔ 𝑔 ∈ 𝐻)) | |
24 | eleq1w 2814 | . . . . . . . 8 ⊢ (𝑓 = 𝑔 → (𝑓 ∈ 𝐶 ↔ 𝑔 ∈ 𝐶)) | |
25 | 23, 24 | imbi12d 343 | . . . . . . 7 ⊢ (𝑓 = 𝑔 → ((𝑓 ∈ 𝐻 → 𝑓 ∈ 𝐶) ↔ (𝑔 ∈ 𝐻 → 𝑔 ∈ 𝐶))) |
26 | 22, 25, 15 | chvarfv 2231 | . . . . . 6 ⊢ (𝑔 ∈ 𝐻 → 𝑔 ∈ 𝐶) |
27 | eqid 2730 | . . . . . . 7 ⊢ (dom 𝑓 ∩ dom 𝑔) = (dom 𝑓 ∩ dom 𝑔) | |
28 | 1, 2, 3, 27 | bnj1326 34335 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑓 ∈ 𝐶 ∧ 𝑔 ∈ 𝐶) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) |
29 | 14, 15, 26, 28 | syl3an 1158 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑓 ∈ 𝐻 ∧ 𝑔 ∈ 𝐻) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) |
30 | 29 | 3expib 1120 | . . . 4 ⊢ (𝑅 FrSe 𝐴 → ((𝑓 ∈ 𝐻 ∧ 𝑔 ∈ 𝐻) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))) |
31 | 30 | ralrimivv 3196 | . . 3 ⊢ (𝑅 FrSe 𝐴 → ∀𝑓 ∈ 𝐻 ∀𝑔 ∈ 𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) |
32 | biid 260 | . . . 4 ⊢ (∀𝑓 ∈ 𝐻 Fun 𝑓 ↔ ∀𝑓 ∈ 𝐻 Fun 𝑓) | |
33 | biid 260 | . . . 4 ⊢ ((∀𝑓 ∈ 𝐻 Fun 𝑓 ∧ ∀𝑓 ∈ 𝐻 ∀𝑔 ∈ 𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) ↔ (∀𝑓 ∈ 𝐻 Fun 𝑓 ∧ ∀𝑓 ∈ 𝐻 ∀𝑔 ∈ 𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))) | |
34 | 9 | bnj1317 34130 | . . . 4 ⊢ (𝑧 ∈ 𝐻 → ∀𝑓 𝑧 ∈ 𝐻) |
35 | 32, 27, 33, 34 | bnj1386 34142 | . . 3 ⊢ ((∀𝑓 ∈ 𝐻 Fun 𝑓 ∧ ∀𝑓 ∈ 𝐻 ∀𝑔 ∈ 𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) → Fun ∪ 𝐻) |
36 | 13, 31, 35 | sylancr 585 | . 2 ⊢ (𝑅 FrSe 𝐴 → Fun ∪ 𝐻) |
37 | 10 | funeqi 6568 | . 2 ⊢ (Fun 𝑃 ↔ Fun ∪ 𝐻) |
38 | 36, 37 | sylibr 233 | 1 ⊢ (𝑅 FrSe 𝐴 → Fun 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∃wex 1779 ∈ wcel 2104 {cab 2707 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 {crab 3430 [wsbc 3776 ∪ cun 3945 ∩ cin 3946 ⊆ wss 3947 ∅c0 4321 {csn 4627 ⟨cop 4633 ∪ cuni 4907 class class class wbr 5147 dom cdm 5675 ↾ cres 5677 Fun wfun 6536 Fn wfn 6537 ‘cfv 6542 predc-bnj14 33997 FrSe w-bnj15 34001 trClc-bnj18 34003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-reg 9589 ax-inf2 9638 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7858 df-1o 8468 df-bnj17 33996 df-bnj14 33998 df-bnj13 34000 df-bnj15 34002 df-bnj18 34004 df-bnj19 34006 |
This theorem is referenced by: bnj1312 34367 |
Copyright terms: Public domain | W3C validator |