Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1384 Structured version   Visualization version   GIF version

Theorem bnj1384 34341
Description: Technical lemma for bnj60 34371. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1384.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1384.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1384.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1384.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1384.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1384.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1384.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1384.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1384.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1384.10 𝑃 = 𝐻
Assertion
Ref Expression
bnj1384 (𝑅 FrSe 𝐴 → Fun 𝑃)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝑦,𝐶   𝐺,𝑑,𝑓   𝑅,𝑑,𝑓,𝑥   𝑦,𝑓,𝑥
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑓,𝑑)   𝐴(𝑦)   𝐵(𝑥,𝑦,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝐷(𝑥,𝑦,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑓,𝑑)   𝑅(𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑓,𝑑)

Proof of Theorem bnj1384
Dummy variables 𝑧 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj1384.1 . . . . 5 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
2 bnj1384.2 . . . . 5 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
3 bnj1384.3 . . . . 5 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
4 bnj1384.4 . . . . 5 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
5 bnj1384.5 . . . . 5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
6 bnj1384.6 . . . . 5 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
7 bnj1384.7 . . . . 5 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
8 bnj1384.8 . . . . 5 (𝜏′[𝑦 / 𝑥]𝜏)
9 bnj1384.9 . . . . 5 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
10 bnj1384.10 . . . . 5 𝑃 = 𝐻
111, 2, 3, 4, 8bnj1373 34339 . . . . 5 (𝜏′ ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11bnj1371 34338 . . . 4 (𝑓𝐻 → Fun 𝑓)
1312rgen 3061 . . 3 𝑓𝐻 Fun 𝑓
14 id 22 . . . . . 6 (𝑅 FrSe 𝐴𝑅 FrSe 𝐴)
151, 2, 3, 4, 5, 6, 7, 8, 9bnj1374 34340 . . . . . 6 (𝑓𝐻𝑓𝐶)
16 nfab1 2903 . . . . . . . . . 10 𝑓{𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
179, 16nfcxfr 2899 . . . . . . . . 9 𝑓𝐻
1817nfcri 2888 . . . . . . . 8 𝑓 𝑔𝐻
19 nfab1 2903 . . . . . . . . . 10 𝑓{𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
203, 19nfcxfr 2899 . . . . . . . . 9 𝑓𝐶
2120nfcri 2888 . . . . . . . 8 𝑓 𝑔𝐶
2218, 21nfim 1897 . . . . . . 7 𝑓(𝑔𝐻𝑔𝐶)
23 eleq1w 2814 . . . . . . . 8 (𝑓 = 𝑔 → (𝑓𝐻𝑔𝐻))
24 eleq1w 2814 . . . . . . . 8 (𝑓 = 𝑔 → (𝑓𝐶𝑔𝐶))
2523, 24imbi12d 343 . . . . . . 7 (𝑓 = 𝑔 → ((𝑓𝐻𝑓𝐶) ↔ (𝑔𝐻𝑔𝐶)))
2622, 25, 15chvarfv 2231 . . . . . 6 (𝑔𝐻𝑔𝐶)
27 eqid 2730 . . . . . . 7 (dom 𝑓 ∩ dom 𝑔) = (dom 𝑓 ∩ dom 𝑔)
281, 2, 3, 27bnj1326 34335 . . . . . 6 ((𝑅 FrSe 𝐴𝑓𝐶𝑔𝐶) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))
2914, 15, 26, 28syl3an 1158 . . . . 5 ((𝑅 FrSe 𝐴𝑓𝐻𝑔𝐻) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))
30293expib 1120 . . . 4 (𝑅 FrSe 𝐴 → ((𝑓𝐻𝑔𝐻) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))))
3130ralrimivv 3196 . . 3 (𝑅 FrSe 𝐴 → ∀𝑓𝐻𝑔𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))
32 biid 260 . . . 4 (∀𝑓𝐻 Fun 𝑓 ↔ ∀𝑓𝐻 Fun 𝑓)
33 biid 260 . . . 4 ((∀𝑓𝐻 Fun 𝑓 ∧ ∀𝑓𝐻𝑔𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) ↔ (∀𝑓𝐻 Fun 𝑓 ∧ ∀𝑓𝐻𝑔𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))))
349bnj1317 34130 . . . 4 (𝑧𝐻 → ∀𝑓 𝑧𝐻)
3532, 27, 33, 34bnj1386 34142 . . 3 ((∀𝑓𝐻 Fun 𝑓 ∧ ∀𝑓𝐻𝑔𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) → Fun 𝐻)
3613, 31, 35sylancr 585 . 2 (𝑅 FrSe 𝐴 → Fun 𝐻)
3710funeqi 6568 . 2 (Fun 𝑃 ↔ Fun 𝐻)
3836, 37sylibr 233 1 (𝑅 FrSe 𝐴 → Fun 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wex 1779  wcel 2104  {cab 2707  wne 2938  wral 3059  wrex 3068  {crab 3430  [wsbc 3776  cun 3945  cin 3946  wss 3947  c0 4321  {csn 4627  cop 4633   cuni 4907   class class class wbr 5147  dom cdm 5675  cres 5677  Fun wfun 6536   Fn wfn 6537  cfv 6542   predc-bnj14 33997   FrSe w-bnj15 34001   trClc-bnj18 34003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-reg 9589  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-om 7858  df-1o 8468  df-bnj17 33996  df-bnj14 33998  df-bnj13 34000  df-bnj15 34002  df-bnj18 34004  df-bnj19 34006
This theorem is referenced by:  bnj1312  34367
  Copyright terms: Public domain W3C validator