Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1384 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 32942. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1384.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1384.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1384.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1384.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
bnj1384.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
bnj1384.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
bnj1384.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
bnj1384.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
bnj1384.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
bnj1384.10 | ⊢ 𝑃 = ∪ 𝐻 |
Ref | Expression |
---|---|
bnj1384 | ⊢ (𝑅 FrSe 𝐴 → Fun 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1384.1 | . . . . 5 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
2 | bnj1384.2 | . . . . 5 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
3 | bnj1384.3 | . . . . 5 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
4 | bnj1384.4 | . . . . 5 ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) | |
5 | bnj1384.5 | . . . . 5 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | |
6 | bnj1384.6 | . . . . 5 ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | |
7 | bnj1384.7 | . . . . 5 ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | |
8 | bnj1384.8 | . . . . 5 ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) | |
9 | bnj1384.9 | . . . . 5 ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
10 | bnj1384.10 | . . . . 5 ⊢ 𝑃 = ∪ 𝐻 | |
11 | 1, 2, 3, 4, 8 | bnj1373 32910 | . . . . 5 ⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | bnj1371 32909 | . . . 4 ⊢ (𝑓 ∈ 𝐻 → Fun 𝑓) |
13 | 12 | rgen 3073 | . . 3 ⊢ ∀𝑓 ∈ 𝐻 Fun 𝑓 |
14 | id 22 | . . . . . 6 ⊢ (𝑅 FrSe 𝐴 → 𝑅 FrSe 𝐴) | |
15 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | bnj1374 32911 | . . . . . 6 ⊢ (𝑓 ∈ 𝐻 → 𝑓 ∈ 𝐶) |
16 | nfab1 2908 | . . . . . . . . . 10 ⊢ Ⅎ𝑓{𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
17 | 9, 16 | nfcxfr 2904 | . . . . . . . . 9 ⊢ Ⅎ𝑓𝐻 |
18 | 17 | nfcri 2893 | . . . . . . . 8 ⊢ Ⅎ𝑓 𝑔 ∈ 𝐻 |
19 | nfab1 2908 | . . . . . . . . . 10 ⊢ Ⅎ𝑓{𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
20 | 3, 19 | nfcxfr 2904 | . . . . . . . . 9 ⊢ Ⅎ𝑓𝐶 |
21 | 20 | nfcri 2893 | . . . . . . . 8 ⊢ Ⅎ𝑓 𝑔 ∈ 𝐶 |
22 | 18, 21 | nfim 1900 | . . . . . . 7 ⊢ Ⅎ𝑓(𝑔 ∈ 𝐻 → 𝑔 ∈ 𝐶) |
23 | eleq1w 2821 | . . . . . . . 8 ⊢ (𝑓 = 𝑔 → (𝑓 ∈ 𝐻 ↔ 𝑔 ∈ 𝐻)) | |
24 | eleq1w 2821 | . . . . . . . 8 ⊢ (𝑓 = 𝑔 → (𝑓 ∈ 𝐶 ↔ 𝑔 ∈ 𝐶)) | |
25 | 23, 24 | imbi12d 344 | . . . . . . 7 ⊢ (𝑓 = 𝑔 → ((𝑓 ∈ 𝐻 → 𝑓 ∈ 𝐶) ↔ (𝑔 ∈ 𝐻 → 𝑔 ∈ 𝐶))) |
26 | 22, 25, 15 | chvarfv 2236 | . . . . . 6 ⊢ (𝑔 ∈ 𝐻 → 𝑔 ∈ 𝐶) |
27 | eqid 2738 | . . . . . . 7 ⊢ (dom 𝑓 ∩ dom 𝑔) = (dom 𝑓 ∩ dom 𝑔) | |
28 | 1, 2, 3, 27 | bnj1326 32906 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑓 ∈ 𝐶 ∧ 𝑔 ∈ 𝐶) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) |
29 | 14, 15, 26, 28 | syl3an 1158 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑓 ∈ 𝐻 ∧ 𝑔 ∈ 𝐻) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) |
30 | 29 | 3expib 1120 | . . . 4 ⊢ (𝑅 FrSe 𝐴 → ((𝑓 ∈ 𝐻 ∧ 𝑔 ∈ 𝐻) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))) |
31 | 30 | ralrimivv 3113 | . . 3 ⊢ (𝑅 FrSe 𝐴 → ∀𝑓 ∈ 𝐻 ∀𝑔 ∈ 𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) |
32 | biid 260 | . . . 4 ⊢ (∀𝑓 ∈ 𝐻 Fun 𝑓 ↔ ∀𝑓 ∈ 𝐻 Fun 𝑓) | |
33 | biid 260 | . . . 4 ⊢ ((∀𝑓 ∈ 𝐻 Fun 𝑓 ∧ ∀𝑓 ∈ 𝐻 ∀𝑔 ∈ 𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) ↔ (∀𝑓 ∈ 𝐻 Fun 𝑓 ∧ ∀𝑓 ∈ 𝐻 ∀𝑔 ∈ 𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))) | |
34 | 9 | bnj1317 32701 | . . . 4 ⊢ (𝑧 ∈ 𝐻 → ∀𝑓 𝑧 ∈ 𝐻) |
35 | 32, 27, 33, 34 | bnj1386 32713 | . . 3 ⊢ ((∀𝑓 ∈ 𝐻 Fun 𝑓 ∧ ∀𝑓 ∈ 𝐻 ∀𝑔 ∈ 𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) → Fun ∪ 𝐻) |
36 | 13, 31, 35 | sylancr 586 | . 2 ⊢ (𝑅 FrSe 𝐴 → Fun ∪ 𝐻) |
37 | 10 | funeqi 6439 | . 2 ⊢ (Fun 𝑃 ↔ Fun ∪ 𝐻) |
38 | 36, 37 | sylibr 233 | 1 ⊢ (𝑅 FrSe 𝐴 → Fun 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 {crab 3067 [wsbc 3711 ∪ cun 3881 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {csn 4558 〈cop 4564 ∪ cuni 4836 class class class wbr 5070 dom cdm 5580 ↾ cres 5582 Fun wfun 6412 Fn wfn 6413 ‘cfv 6418 predc-bnj14 32567 FrSe w-bnj15 32571 trClc-bnj18 32573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-reg 9281 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-bnj17 32566 df-bnj14 32568 df-bnj13 32570 df-bnj15 32572 df-bnj18 32574 df-bnj19 32576 |
This theorem is referenced by: bnj1312 32938 |
Copyright terms: Public domain | W3C validator |