| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1384 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj60 35093. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1384.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| bnj1384.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1384.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj1384.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
| bnj1384.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
| bnj1384.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
| bnj1384.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
| bnj1384.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
| bnj1384.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
| bnj1384.10 | ⊢ 𝑃 = ∪ 𝐻 |
| Ref | Expression |
|---|---|
| bnj1384 | ⊢ (𝑅 FrSe 𝐴 → Fun 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1384.1 | . . . . 5 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
| 2 | bnj1384.2 | . . . . 5 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
| 3 | bnj1384.3 | . . . . 5 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
| 4 | bnj1384.4 | . . . . 5 ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) | |
| 5 | bnj1384.5 | . . . . 5 ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | |
| 6 | bnj1384.6 | . . . . 5 ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | |
| 7 | bnj1384.7 | . . . . 5 ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | |
| 8 | bnj1384.8 | . . . . 5 ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) | |
| 9 | bnj1384.9 | . . . . 5 ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
| 10 | bnj1384.10 | . . . . 5 ⊢ 𝑃 = ∪ 𝐻 | |
| 11 | 1, 2, 3, 4, 8 | bnj1373 35061 | . . . . 5 ⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | bnj1371 35060 | . . . 4 ⊢ (𝑓 ∈ 𝐻 → Fun 𝑓) |
| 13 | 12 | rgen 3053 | . . 3 ⊢ ∀𝑓 ∈ 𝐻 Fun 𝑓 |
| 14 | id 22 | . . . . . 6 ⊢ (𝑅 FrSe 𝐴 → 𝑅 FrSe 𝐴) | |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | bnj1374 35062 | . . . . . 6 ⊢ (𝑓 ∈ 𝐻 → 𝑓 ∈ 𝐶) |
| 16 | nfab1 2900 | . . . . . . . . . 10 ⊢ Ⅎ𝑓{𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
| 17 | 9, 16 | nfcxfr 2896 | . . . . . . . . 9 ⊢ Ⅎ𝑓𝐻 |
| 18 | 17 | nfcri 2890 | . . . . . . . 8 ⊢ Ⅎ𝑓 𝑔 ∈ 𝐻 |
| 19 | nfab1 2900 | . . . . . . . . . 10 ⊢ Ⅎ𝑓{𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
| 20 | 3, 19 | nfcxfr 2896 | . . . . . . . . 9 ⊢ Ⅎ𝑓𝐶 |
| 21 | 20 | nfcri 2890 | . . . . . . . 8 ⊢ Ⅎ𝑓 𝑔 ∈ 𝐶 |
| 22 | 18, 21 | nfim 1896 | . . . . . . 7 ⊢ Ⅎ𝑓(𝑔 ∈ 𝐻 → 𝑔 ∈ 𝐶) |
| 23 | eleq1w 2817 | . . . . . . . 8 ⊢ (𝑓 = 𝑔 → (𝑓 ∈ 𝐻 ↔ 𝑔 ∈ 𝐻)) | |
| 24 | eleq1w 2817 | . . . . . . . 8 ⊢ (𝑓 = 𝑔 → (𝑓 ∈ 𝐶 ↔ 𝑔 ∈ 𝐶)) | |
| 25 | 23, 24 | imbi12d 344 | . . . . . . 7 ⊢ (𝑓 = 𝑔 → ((𝑓 ∈ 𝐻 → 𝑓 ∈ 𝐶) ↔ (𝑔 ∈ 𝐻 → 𝑔 ∈ 𝐶))) |
| 26 | 22, 25, 15 | chvarfv 2240 | . . . . . 6 ⊢ (𝑔 ∈ 𝐻 → 𝑔 ∈ 𝐶) |
| 27 | eqid 2735 | . . . . . . 7 ⊢ (dom 𝑓 ∩ dom 𝑔) = (dom 𝑓 ∩ dom 𝑔) | |
| 28 | 1, 2, 3, 27 | bnj1326 35057 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑓 ∈ 𝐶 ∧ 𝑔 ∈ 𝐶) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) |
| 29 | 14, 15, 26, 28 | syl3an 1160 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑓 ∈ 𝐻 ∧ 𝑔 ∈ 𝐻) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) |
| 30 | 29 | 3expib 1122 | . . . 4 ⊢ (𝑅 FrSe 𝐴 → ((𝑓 ∈ 𝐻 ∧ 𝑔 ∈ 𝐻) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))) |
| 31 | 30 | ralrimivv 3185 | . . 3 ⊢ (𝑅 FrSe 𝐴 → ∀𝑓 ∈ 𝐻 ∀𝑔 ∈ 𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) |
| 32 | biid 261 | . . . 4 ⊢ (∀𝑓 ∈ 𝐻 Fun 𝑓 ↔ ∀𝑓 ∈ 𝐻 Fun 𝑓) | |
| 33 | biid 261 | . . . 4 ⊢ ((∀𝑓 ∈ 𝐻 Fun 𝑓 ∧ ∀𝑓 ∈ 𝐻 ∀𝑔 ∈ 𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) ↔ (∀𝑓 ∈ 𝐻 Fun 𝑓 ∧ ∀𝑓 ∈ 𝐻 ∀𝑔 ∈ 𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))) | |
| 34 | 9 | bnj1317 34852 | . . . 4 ⊢ (𝑧 ∈ 𝐻 → ∀𝑓 𝑧 ∈ 𝐻) |
| 35 | 32, 27, 33, 34 | bnj1386 34864 | . . 3 ⊢ ((∀𝑓 ∈ 𝐻 Fun 𝑓 ∧ ∀𝑓 ∈ 𝐻 ∀𝑔 ∈ 𝐻 (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) → Fun ∪ 𝐻) |
| 36 | 13, 31, 35 | sylancr 587 | . 2 ⊢ (𝑅 FrSe 𝐴 → Fun ∪ 𝐻) |
| 37 | 10 | funeqi 6557 | . 2 ⊢ (Fun 𝑃 ↔ Fun ∪ 𝐻) |
| 38 | 36, 37 | sylibr 234 | 1 ⊢ (𝑅 FrSe 𝐴 → Fun 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2713 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 {crab 3415 [wsbc 3765 ∪ cun 3924 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 {csn 4601 〈cop 4607 ∪ cuni 4883 class class class wbr 5119 dom cdm 5654 ↾ cres 5656 Fun wfun 6525 Fn wfn 6526 ‘cfv 6531 predc-bnj14 34719 FrSe w-bnj15 34723 trClc-bnj18 34725 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-reg 9606 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-1o 8480 df-bnj17 34718 df-bnj14 34720 df-bnj13 34722 df-bnj15 34724 df-bnj18 34726 df-bnj19 34728 |
| This theorem is referenced by: bnj1312 35089 |
| Copyright terms: Public domain | W3C validator |