| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj23 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj23.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} |
| Ref | Expression |
|---|---|
| bnj23 | ⊢ (∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑦 → ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑦 → [𝑤 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcng 3818 | . . . . 5 ⊢ (𝑤 ∈ V → ([𝑤 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑤 / 𝑥]𝜑)) | |
| 2 | 1 | elv 3469 | . . . 4 ⊢ ([𝑤 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑤 / 𝑥]𝜑) |
| 3 | bnj23.1 | . . . . . . . 8 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} | |
| 4 | 3 | eleq2i 2827 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐵 ↔ 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) |
| 5 | nfcv 2899 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 5 | elrabsf 3816 | . . . . . . 7 ⊢ (𝑤 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ↔ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥] ¬ 𝜑)) |
| 7 | 4, 6 | bitri 275 | . . . . . 6 ⊢ (𝑤 ∈ 𝐵 ↔ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥] ¬ 𝜑)) |
| 8 | breq1 5127 | . . . . . . . 8 ⊢ (𝑧 = 𝑤 → (𝑧𝑅𝑦 ↔ 𝑤𝑅𝑦)) | |
| 9 | 8 | notbid 318 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑤𝑅𝑦)) |
| 10 | 9 | rspccv 3603 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑦 → (𝑤 ∈ 𝐵 → ¬ 𝑤𝑅𝑦)) |
| 11 | 7, 10 | biimtrrid 243 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑦 → ((𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥] ¬ 𝜑) → ¬ 𝑤𝑅𝑦)) |
| 12 | 11 | expdimp 452 | . . . 4 ⊢ ((∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑦 ∧ 𝑤 ∈ 𝐴) → ([𝑤 / 𝑥] ¬ 𝜑 → ¬ 𝑤𝑅𝑦)) |
| 13 | 2, 12 | biimtrrid 243 | . . 3 ⊢ ((∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑦 ∧ 𝑤 ∈ 𝐴) → (¬ [𝑤 / 𝑥]𝜑 → ¬ 𝑤𝑅𝑦)) |
| 14 | 13 | con4d 115 | . 2 ⊢ ((∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑦 ∧ 𝑤 ∈ 𝐴) → (𝑤𝑅𝑦 → [𝑤 / 𝑥]𝜑)) |
| 15 | 14 | ralrimiva 3133 | 1 ⊢ (∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑦 → ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑦 → [𝑤 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 Vcvv 3464 [wsbc 3770 class class class wbr 5124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 |
| This theorem is referenced by: bnj110 34894 |
| Copyright terms: Public domain | W3C validator |