Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj23 Structured version   Visualization version   GIF version

Theorem bnj23 32997
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj23.1 𝐵 = {𝑥𝐴 ∣ ¬ 𝜑}
Assertion
Ref Expression
bnj23 (∀𝑧𝐵 ¬ 𝑧𝑅𝑦 → ∀𝑤𝐴 (𝑤𝑅𝑦[𝑤 / 𝑥]𝜑))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴,𝑧   𝑤,𝐵,𝑦,𝑧   𝑤,𝑅,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑤)   𝐵(𝑥)   𝑅(𝑥)

Proof of Theorem bnj23
StepHypRef Expression
1 sbcng 3777 . . . . 5 (𝑤 ∈ V → ([𝑤 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑤 / 𝑥]𝜑))
21elv 3447 . . . 4 ([𝑤 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑤 / 𝑥]𝜑)
3 bnj23.1 . . . . . . . 8 𝐵 = {𝑥𝐴 ∣ ¬ 𝜑}
43eleq2i 2828 . . . . . . 7 (𝑤𝐵𝑤 ∈ {𝑥𝐴 ∣ ¬ 𝜑})
5 nfcv 2904 . . . . . . . 8 𝑥𝐴
65elrabsf 3775 . . . . . . 7 (𝑤 ∈ {𝑥𝐴 ∣ ¬ 𝜑} ↔ (𝑤𝐴[𝑤 / 𝑥] ¬ 𝜑))
74, 6bitri 274 . . . . . 6 (𝑤𝐵 ↔ (𝑤𝐴[𝑤 / 𝑥] ¬ 𝜑))
8 breq1 5095 . . . . . . . 8 (𝑧 = 𝑤 → (𝑧𝑅𝑦𝑤𝑅𝑦))
98notbid 317 . . . . . . 7 (𝑧 = 𝑤 → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑤𝑅𝑦))
109rspccv 3567 . . . . . 6 (∀𝑧𝐵 ¬ 𝑧𝑅𝑦 → (𝑤𝐵 → ¬ 𝑤𝑅𝑦))
117, 10syl5bir 242 . . . . 5 (∀𝑧𝐵 ¬ 𝑧𝑅𝑦 → ((𝑤𝐴[𝑤 / 𝑥] ¬ 𝜑) → ¬ 𝑤𝑅𝑦))
1211expdimp 453 . . . 4 ((∀𝑧𝐵 ¬ 𝑧𝑅𝑦𝑤𝐴) → ([𝑤 / 𝑥] ¬ 𝜑 → ¬ 𝑤𝑅𝑦))
132, 12syl5bir 242 . . 3 ((∀𝑧𝐵 ¬ 𝑧𝑅𝑦𝑤𝐴) → (¬ [𝑤 / 𝑥]𝜑 → ¬ 𝑤𝑅𝑦))
1413con4d 115 . 2 ((∀𝑧𝐵 ¬ 𝑧𝑅𝑦𝑤𝐴) → (𝑤𝑅𝑦[𝑤 / 𝑥]𝜑))
1514ralrimiva 3139 1 (∀𝑧𝐵 ¬ 𝑧𝑅𝑦 → ∀𝑤𝐴 (𝑤𝑅𝑦[𝑤 / 𝑥]𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wral 3061  {crab 3403  Vcvv 3441  [wsbc 3727   class class class wbr 5092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rab 3404  df-v 3443  df-sbc 3728  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-br 5093
This theorem is referenced by:  bnj110  33137
  Copyright terms: Public domain W3C validator