![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj23 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj23.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} |
Ref | Expression |
---|---|
bnj23 | ⊢ (∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑦 → ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑦 → [𝑤 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcng 3828 | . . . . 5 ⊢ (𝑤 ∈ V → ([𝑤 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑤 / 𝑥]𝜑)) | |
2 | 1 | elv 3481 | . . . 4 ⊢ ([𝑤 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑤 / 𝑥]𝜑) |
3 | bnj23.1 | . . . . . . . 8 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} | |
4 | 3 | eleq2i 2826 | . . . . . . 7 ⊢ (𝑤 ∈ 𝐵 ↔ 𝑤 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) |
5 | nfcv 2904 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
6 | 5 | elrabsf 3826 | . . . . . . 7 ⊢ (𝑤 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ↔ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥] ¬ 𝜑)) |
7 | 4, 6 | bitri 275 | . . . . . 6 ⊢ (𝑤 ∈ 𝐵 ↔ (𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥] ¬ 𝜑)) |
8 | breq1 5152 | . . . . . . . 8 ⊢ (𝑧 = 𝑤 → (𝑧𝑅𝑦 ↔ 𝑤𝑅𝑦)) | |
9 | 8 | notbid 318 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑤𝑅𝑦)) |
10 | 9 | rspccv 3610 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑦 → (𝑤 ∈ 𝐵 → ¬ 𝑤𝑅𝑦)) |
11 | 7, 10 | biimtrrid 242 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑦 → ((𝑤 ∈ 𝐴 ∧ [𝑤 / 𝑥] ¬ 𝜑) → ¬ 𝑤𝑅𝑦)) |
12 | 11 | expdimp 454 | . . . 4 ⊢ ((∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑦 ∧ 𝑤 ∈ 𝐴) → ([𝑤 / 𝑥] ¬ 𝜑 → ¬ 𝑤𝑅𝑦)) |
13 | 2, 12 | biimtrrid 242 | . . 3 ⊢ ((∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑦 ∧ 𝑤 ∈ 𝐴) → (¬ [𝑤 / 𝑥]𝜑 → ¬ 𝑤𝑅𝑦)) |
14 | 13 | con4d 115 | . 2 ⊢ ((∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑦 ∧ 𝑤 ∈ 𝐴) → (𝑤𝑅𝑦 → [𝑤 / 𝑥]𝜑)) |
15 | 14 | ralrimiva 3147 | 1 ⊢ (∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑦 → ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑦 → [𝑤 / 𝑥]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 {crab 3433 Vcvv 3475 [wsbc 3778 class class class wbr 5149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 |
This theorem is referenced by: bnj110 33869 |
Copyright terms: Public domain | W3C validator |