Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj938 Structured version   Visualization version   GIF version

Theorem bnj938 33606
Description: Technical lemma for bnj69 33679. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj938.1 𝐷 = (ω ∖ {∅})
bnj938.2 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj938.3 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj938.4 (𝜑′ ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj938.5 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj938 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
Distinct variable groups:   𝐴,𝑖,𝑝,𝑦   𝑅,𝑖,𝑝,𝑦   𝑓,𝑖,𝑝,𝑦   𝑖,𝑚,𝑝
Allowed substitution hints:   𝜏(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑓,𝑚,𝑛)   𝐷(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑓,𝑚,𝑛)   𝑋(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓′(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj938
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elisset 2816 . . 3 (𝑋𝐴 → ∃𝑥 𝑥 = 𝑋)
21bnj706 33423 . 2 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → ∃𝑥 𝑥 = 𝑋)
3 bnj291 33380 . . . . . 6 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) ↔ ((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑋𝐴))
43simplbi 499 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → (𝑅 FrSe 𝐴𝜏𝜎))
5 bnj602 33584 . . . . . . . . . 10 (𝑥 = 𝑋 → pred(𝑥, 𝐴, 𝑅) = pred(𝑋, 𝐴, 𝑅))
65eqeq2d 2744 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)))
7 bnj938.4 . . . . . . . . 9 (𝜑′ ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
86, 7bitr4di 289 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ 𝜑′))
983anbi2d 1442 . . . . . . 7 (𝑥 = 𝑋 → ((𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ↔ (𝑓 Fn 𝑚𝜑′𝜓′)))
10 bnj938.2 . . . . . . 7 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
119, 10bitr4di 289 . . . . . 6 (𝑥 = 𝑋 → ((𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ↔ 𝜏))
12113anbi2d 1442 . . . . 5 (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴 ∧ (𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ∧ 𝜎) ↔ (𝑅 FrSe 𝐴𝜏𝜎)))
134, 12syl5ibr 246 . . . 4 (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → (𝑅 FrSe 𝐴 ∧ (𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ∧ 𝜎)))
14 bnj938.1 . . . . 5 𝐷 = (ω ∖ {∅})
15 biid 261 . . . . 5 ((𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ↔ (𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′))
16 bnj938.3 . . . . 5 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
17 biid 261 . . . . 5 ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
18 bnj938.5 . . . . 5 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
1914, 15, 16, 17, 18bnj546 33565 . . . 4 ((𝑅 FrSe 𝐴 ∧ (𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ∧ 𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
2013, 19syl6 35 . . 3 (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V))
2120exlimiv 1934 . 2 (∃𝑥 𝑥 = 𝑋 → ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V))
222, 21mpcom 38 1 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1088   = wceq 1542  wex 1782  wcel 2107  wral 3061  Vcvv 3444  cdif 3908  c0 4283  {csn 4587   ciun 4955  suc csuc 6320   Fn wfn 6492  cfv 6497  ωcom 7803  w-bnj17 33355   predc-bnj14 33357   FrSe w-bnj15 33361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-tr 5224  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fv 6505  df-om 7804  df-bnj17 33356  df-bnj14 33358  df-bnj13 33360  df-bnj15 33362
This theorem is referenced by:  bnj944  33607  bnj969  33615
  Copyright terms: Public domain W3C validator