| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj938 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj69 35041. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj938.1 | ⊢ 𝐷 = (ω ∖ {∅}) |
| bnj938.2 | ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
| bnj938.3 | ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
| bnj938.4 | ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| bnj938.5 | ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| Ref | Expression |
|---|---|
| bnj938 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2816 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ∃𝑥 𝑥 = 𝑋) | |
| 2 | 1 | bnj706 34785 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) → ∃𝑥 𝑥 = 𝑋) |
| 3 | bnj291 34742 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) ↔ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑋 ∈ 𝐴)) | |
| 4 | 3 | simplbi 497 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) → (𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎)) |
| 5 | bnj602 34946 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑋 → pred(𝑥, 𝐴, 𝑅) = pred(𝑋, 𝐴, 𝑅)) | |
| 6 | 5 | eqeq2d 2746 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))) |
| 7 | bnj938.4 | . . . . . . . . 9 ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
| 8 | 6, 7 | bitr4di 289 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ 𝜑′)) |
| 9 | 8 | 3anbi2d 1443 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → ((𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′))) |
| 10 | bnj938.2 | . . . . . . 7 ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | |
| 11 | 9, 10 | bitr4di 289 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ↔ 𝜏)) |
| 12 | 11 | 3anbi2d 1443 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴 ∧ (𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ∧ 𝜎) ↔ (𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎))) |
| 13 | 4, 12 | imbitrrid 246 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) → (𝑅 FrSe 𝐴 ∧ (𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ∧ 𝜎))) |
| 14 | bnj938.1 | . . . . 5 ⊢ 𝐷 = (ω ∖ {∅}) | |
| 15 | biid 261 | . . . . 5 ⊢ ((𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ↔ (𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′)) | |
| 16 | bnj938.3 | . . . . 5 ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) | |
| 17 | biid 261 | . . . . 5 ⊢ ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
| 18 | bnj938.5 | . . . . 5 ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
| 19 | 14, 15, 16, 17, 18 | bnj546 34927 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ (𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ∧ 𝜎) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
| 20 | 13, 19 | syl6 35 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)) |
| 21 | 20 | exlimiv 1930 | . 2 ⊢ (∃𝑥 𝑥 = 𝑋 → ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)) |
| 22 | 2, 21 | mpcom 38 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ∖ cdif 3923 ∅c0 4308 {csn 4601 ∪ ciun 4967 suc csuc 6354 Fn wfn 6526 ‘cfv 6531 ωcom 7861 ∧ w-bnj17 34717 predc-bnj14 34719 FrSe w-bnj15 34723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fv 6539 df-om 7862 df-bnj17 34718 df-bnj14 34720 df-bnj13 34722 df-bnj15 34724 |
| This theorem is referenced by: bnj944 34969 bnj969 34977 |
| Copyright terms: Public domain | W3C validator |