Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj938 Structured version   Visualization version   GIF version

Theorem bnj938 34913
Description: Technical lemma for bnj69 34986. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj938.1 𝐷 = (ω ∖ {∅})
bnj938.2 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj938.3 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj938.4 (𝜑′ ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj938.5 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj938 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
Distinct variable groups:   𝐴,𝑖,𝑝,𝑦   𝑅,𝑖,𝑝,𝑦   𝑓,𝑖,𝑝,𝑦   𝑖,𝑚,𝑝
Allowed substitution hints:   𝜏(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑓,𝑚,𝑛)   𝐷(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑓,𝑚,𝑛)   𝑋(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓′(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj938
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elisset 2826 . . 3 (𝑋𝐴 → ∃𝑥 𝑥 = 𝑋)
21bnj706 34730 . 2 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → ∃𝑥 𝑥 = 𝑋)
3 bnj291 34687 . . . . . 6 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) ↔ ((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑋𝐴))
43simplbi 497 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → (𝑅 FrSe 𝐴𝜏𝜎))
5 bnj602 34891 . . . . . . . . . 10 (𝑥 = 𝑋 → pred(𝑥, 𝐴, 𝑅) = pred(𝑋, 𝐴, 𝑅))
65eqeq2d 2751 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)))
7 bnj938.4 . . . . . . . . 9 (𝜑′ ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
86, 7bitr4di 289 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ 𝜑′))
983anbi2d 1441 . . . . . . 7 (𝑥 = 𝑋 → ((𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ↔ (𝑓 Fn 𝑚𝜑′𝜓′)))
10 bnj938.2 . . . . . . 7 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
119, 10bitr4di 289 . . . . . 6 (𝑥 = 𝑋 → ((𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ↔ 𝜏))
12113anbi2d 1441 . . . . 5 (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴 ∧ (𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ∧ 𝜎) ↔ (𝑅 FrSe 𝐴𝜏𝜎)))
134, 12imbitrrid 246 . . . 4 (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → (𝑅 FrSe 𝐴 ∧ (𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ∧ 𝜎)))
14 bnj938.1 . . . . 5 𝐷 = (ω ∖ {∅})
15 biid 261 . . . . 5 ((𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ↔ (𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′))
16 bnj938.3 . . . . 5 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
17 biid 261 . . . . 5 ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
18 bnj938.5 . . . . 5 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
1914, 15, 16, 17, 18bnj546 34872 . . . 4 ((𝑅 FrSe 𝐴 ∧ (𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ∧ 𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
2013, 19syl6 35 . . 3 (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V))
2120exlimiv 1929 . 2 (∃𝑥 𝑥 = 𝑋 → ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V))
222, 21mpcom 38 1 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  c0 4352  {csn 4648   ciun 5015  suc csuc 6397   Fn wfn 6568  cfv 6573  ωcom 7903  w-bnj17 34662   predc-bnj14 34664   FrSe w-bnj15 34668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fv 6581  df-om 7904  df-bnj17 34663  df-bnj14 34665  df-bnj13 34667  df-bnj15 34669
This theorem is referenced by:  bnj944  34914  bnj969  34922
  Copyright terms: Public domain W3C validator