| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj938 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj69 34993. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj938.1 | ⊢ 𝐷 = (ω ∖ {∅}) |
| bnj938.2 | ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
| bnj938.3 | ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
| bnj938.4 | ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
| bnj938.5 | ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| Ref | Expression |
|---|---|
| bnj938 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2810 | . . 3 ⊢ (𝑋 ∈ 𝐴 → ∃𝑥 𝑥 = 𝑋) | |
| 2 | 1 | bnj706 34737 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) → ∃𝑥 𝑥 = 𝑋) |
| 3 | bnj291 34694 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) ↔ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ∧ 𝑋 ∈ 𝐴)) | |
| 4 | 3 | simplbi 497 | . . . . 5 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) → (𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎)) |
| 5 | bnj602 34898 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑋 → pred(𝑥, 𝐴, 𝑅) = pred(𝑋, 𝐴, 𝑅)) | |
| 6 | 5 | eqeq2d 2740 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))) |
| 7 | bnj938.4 | . . . . . . . . 9 ⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
| 8 | 6, 7 | bitr4di 289 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ 𝜑′)) |
| 9 | 8 | 3anbi2d 1443 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → ((𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′))) |
| 10 | bnj938.2 | . . . . . . 7 ⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | |
| 11 | 9, 10 | bitr4di 289 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ↔ 𝜏)) |
| 12 | 11 | 3anbi2d 1443 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴 ∧ (𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ∧ 𝜎) ↔ (𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎))) |
| 13 | 4, 12 | imbitrrid 246 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) → (𝑅 FrSe 𝐴 ∧ (𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ∧ 𝜎))) |
| 14 | bnj938.1 | . . . . 5 ⊢ 𝐷 = (ω ∖ {∅}) | |
| 15 | biid 261 | . . . . 5 ⊢ ((𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ↔ (𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′)) | |
| 16 | bnj938.3 | . . . . 5 ⊢ (𝜎 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) | |
| 17 | biid 261 | . . . . 5 ⊢ ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
| 18 | bnj938.5 | . . . . 5 ⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
| 19 | 14, 15, 16, 17, 18 | bnj546 34879 | . . . 4 ⊢ ((𝑅 FrSe 𝐴 ∧ (𝑓 Fn 𝑚 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓′) ∧ 𝜎) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
| 20 | 13, 19 | syl6 35 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)) |
| 21 | 20 | exlimiv 1930 | . 2 ⊢ (∃𝑥 𝑥 = 𝑋 → ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)) |
| 22 | 2, 21 | mpcom 38 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎) → ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ∖ cdif 3908 ∅c0 4292 {csn 4585 ∪ ciun 4951 suc csuc 6322 Fn wfn 6494 ‘cfv 6499 ωcom 7822 ∧ w-bnj17 34669 predc-bnj14 34671 FrSe w-bnj15 34675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fv 6507 df-om 7823 df-bnj17 34670 df-bnj14 34672 df-bnj13 34674 df-bnj15 34676 |
| This theorem is referenced by: bnj944 34921 bnj969 34929 |
| Copyright terms: Public domain | W3C validator |