Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj579 Structured version   Visualization version   GIF version

Theorem bnj579 32894
Description: Technical lemma for bnj852 32901. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj579.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj579.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj579.3 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj579 (𝑛𝐷 → ∃*𝑓(𝑓 Fn 𝑛𝜑𝜓))
Distinct variable groups:   𝐴,𝑓,𝑖   𝐷,𝑓   𝑅,𝑓,𝑖   𝑓,𝑛,𝑖   𝑥,𝑓   𝑦,𝑓,𝑖
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜓(𝑥,𝑦,𝑓,𝑖,𝑛)   𝐴(𝑥,𝑦,𝑛)   𝐷(𝑥,𝑦,𝑖,𝑛)   𝑅(𝑥,𝑦,𝑛)

Proof of Theorem bnj579
Dummy variables 𝑘 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj579.1 . 2 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
2 bnj579.2 . 2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 biid 260 . 2 ((𝑓 Fn 𝑛𝜑𝜓) ↔ (𝑓 Fn 𝑛𝜑𝜓))
4 biid 260 . 2 ([𝑔 / 𝑓]𝜑[𝑔 / 𝑓]𝜑)
5 biid 260 . 2 ([𝑔 / 𝑓]𝜓[𝑔 / 𝑓]𝜓)
6 biid 260 . 2 ([𝑔 / 𝑓](𝑓 Fn 𝑛𝜑𝜓) ↔ [𝑔 / 𝑓](𝑓 Fn 𝑛𝜑𝜓))
7 bnj579.3 . 2 𝐷 = (ω ∖ {∅})
8 biid 260 . 2 (((𝑛𝐷 ∧ (𝑓 Fn 𝑛𝜑𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛𝜑𝜓)) → (𝑓𝑗) = (𝑔𝑗)) ↔ ((𝑛𝐷 ∧ (𝑓 Fn 𝑛𝜑𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛𝜑𝜓)) → (𝑓𝑗) = (𝑔𝑗)))
9 biid 260 . 2 (∀𝑘𝑛 (𝑘 E 𝑗[𝑘 / 𝑗]((𝑛𝐷 ∧ (𝑓 Fn 𝑛𝜑𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛𝜑𝜓)) → (𝑓𝑗) = (𝑔𝑗))) ↔ ∀𝑘𝑛 (𝑘 E 𝑗[𝑘 / 𝑗]((𝑛𝐷 ∧ (𝑓 Fn 𝑛𝜑𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛𝜑𝜓)) → (𝑓𝑗) = (𝑔𝑗))))
101, 2, 3, 4, 5, 6, 7, 8, 9bnj580 32893 1 (𝑛𝐷 → ∃*𝑓(𝑓 Fn 𝑛𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  ∃*wmo 2538  wral 3064  [wsbc 3716  cdif 3884  c0 4256  {csn 4561   ciun 4924   class class class wbr 5074   E cep 5494  suc csuc 6268   Fn wfn 6428  cfv 6433  ωcom 7712   predc-bnj14 32667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-om 7713  df-bnj17 32666
This theorem is referenced by:  bnj600  32899
  Copyright terms: Public domain W3C validator