| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj579 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj852 34898. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj579.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
| bnj579.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
| bnj579.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
| Ref | Expression |
|---|---|
| bnj579 | ⊢ (𝑛 ∈ 𝐷 → ∃*𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj579.1 | . 2 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
| 2 | bnj579.2 | . 2 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
| 3 | biid 261 | . 2 ⊢ ((𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
| 4 | biid 261 | . 2 ⊢ ([𝑔 / 𝑓]𝜑 ↔ [𝑔 / 𝑓]𝜑) | |
| 5 | biid 261 | . 2 ⊢ ([𝑔 / 𝑓]𝜓 ↔ [𝑔 / 𝑓]𝜓) | |
| 6 | biid 261 | . 2 ⊢ ([𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ [𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
| 7 | bnj579.3 | . 2 ⊢ 𝐷 = (ω ∖ {∅}) | |
| 8 | biid 261 | . 2 ⊢ (((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) → (𝑓‘𝑗) = (𝑔‘𝑗)) ↔ ((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) → (𝑓‘𝑗) = (𝑔‘𝑗))) | |
| 9 | biid 261 | . 2 ⊢ (∀𝑘 ∈ 𝑛 (𝑘 E 𝑗 → [𝑘 / 𝑗]((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) → (𝑓‘𝑗) = (𝑔‘𝑗))) ↔ ∀𝑘 ∈ 𝑛 (𝑘 E 𝑗 → [𝑘 / 𝑗]((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) → (𝑓‘𝑗) = (𝑔‘𝑗)))) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | bnj580 34890 | 1 ⊢ (𝑛 ∈ 𝐷 → ∃*𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∃*wmo 2537 ∀wral 3051 [wsbc 3765 ∖ cdif 3923 ∅c0 4308 {csn 4601 ∪ ciun 4967 class class class wbr 5119 E cep 5552 suc csuc 6354 Fn wfn 6525 ‘cfv 6530 ωcom 7859 predc-bnj14 34665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-fv 6538 df-om 7860 df-bnj17 34664 |
| This theorem is referenced by: bnj600 34896 |
| Copyright terms: Public domain | W3C validator |