Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj579 Structured version   Visualization version   GIF version

Theorem bnj579 32873
Description: Technical lemma for bnj852 32880. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj579.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj579.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj579.3 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj579 (𝑛𝐷 → ∃*𝑓(𝑓 Fn 𝑛𝜑𝜓))
Distinct variable groups:   𝐴,𝑓,𝑖   𝐷,𝑓   𝑅,𝑓,𝑖   𝑓,𝑛,𝑖   𝑥,𝑓   𝑦,𝑓,𝑖
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜓(𝑥,𝑦,𝑓,𝑖,𝑛)   𝐴(𝑥,𝑦,𝑛)   𝐷(𝑥,𝑦,𝑖,𝑛)   𝑅(𝑥,𝑦,𝑛)

Proof of Theorem bnj579
Dummy variables 𝑘 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj579.1 . 2 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
2 bnj579.2 . 2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 biid 260 . 2 ((𝑓 Fn 𝑛𝜑𝜓) ↔ (𝑓 Fn 𝑛𝜑𝜓))
4 biid 260 . 2 ([𝑔 / 𝑓]𝜑[𝑔 / 𝑓]𝜑)
5 biid 260 . 2 ([𝑔 / 𝑓]𝜓[𝑔 / 𝑓]𝜓)
6 biid 260 . 2 ([𝑔 / 𝑓](𝑓 Fn 𝑛𝜑𝜓) ↔ [𝑔 / 𝑓](𝑓 Fn 𝑛𝜑𝜓))
7 bnj579.3 . 2 𝐷 = (ω ∖ {∅})
8 biid 260 . 2 (((𝑛𝐷 ∧ (𝑓 Fn 𝑛𝜑𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛𝜑𝜓)) → (𝑓𝑗) = (𝑔𝑗)) ↔ ((𝑛𝐷 ∧ (𝑓 Fn 𝑛𝜑𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛𝜑𝜓)) → (𝑓𝑗) = (𝑔𝑗)))
9 biid 260 . 2 (∀𝑘𝑛 (𝑘 E 𝑗[𝑘 / 𝑗]((𝑛𝐷 ∧ (𝑓 Fn 𝑛𝜑𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛𝜑𝜓)) → (𝑓𝑗) = (𝑔𝑗))) ↔ ∀𝑘𝑛 (𝑘 E 𝑗[𝑘 / 𝑗]((𝑛𝐷 ∧ (𝑓 Fn 𝑛𝜑𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛𝜑𝜓)) → (𝑓𝑗) = (𝑔𝑗))))
101, 2, 3, 4, 5, 6, 7, 8, 9bnj580 32872 1 (𝑛𝐷 → ∃*𝑓(𝑓 Fn 𝑛𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1541  wcel 2109  ∃*wmo 2539  wral 3065  [wsbc 3719  cdif 3888  c0 4261  {csn 4566   ciun 4929   class class class wbr 5078   E cep 5493  suc csuc 6265   Fn wfn 6425  cfv 6430  ωcom 7700   predc-bnj14 32646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-fv 6438  df-om 7701  df-bnj17 32645
This theorem is referenced by:  bnj600  32878
  Copyright terms: Public domain W3C validator