Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj579 Structured version   Visualization version   GIF version

Theorem bnj579 34890
Description: Technical lemma for bnj852 34897. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj579.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj579.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj579.3 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj579 (𝑛𝐷 → ∃*𝑓(𝑓 Fn 𝑛𝜑𝜓))
Distinct variable groups:   𝐴,𝑓,𝑖   𝐷,𝑓   𝑅,𝑓,𝑖   𝑓,𝑛,𝑖   𝑥,𝑓   𝑦,𝑓,𝑖
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜓(𝑥,𝑦,𝑓,𝑖,𝑛)   𝐴(𝑥,𝑦,𝑛)   𝐷(𝑥,𝑦,𝑖,𝑛)   𝑅(𝑥,𝑦,𝑛)

Proof of Theorem bnj579
Dummy variables 𝑘 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj579.1 . 2 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
2 bnj579.2 . 2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 biid 261 . 2 ((𝑓 Fn 𝑛𝜑𝜓) ↔ (𝑓 Fn 𝑛𝜑𝜓))
4 biid 261 . 2 ([𝑔 / 𝑓]𝜑[𝑔 / 𝑓]𝜑)
5 biid 261 . 2 ([𝑔 / 𝑓]𝜓[𝑔 / 𝑓]𝜓)
6 biid 261 . 2 ([𝑔 / 𝑓](𝑓 Fn 𝑛𝜑𝜓) ↔ [𝑔 / 𝑓](𝑓 Fn 𝑛𝜑𝜓))
7 bnj579.3 . 2 𝐷 = (ω ∖ {∅})
8 biid 261 . 2 (((𝑛𝐷 ∧ (𝑓 Fn 𝑛𝜑𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛𝜑𝜓)) → (𝑓𝑗) = (𝑔𝑗)) ↔ ((𝑛𝐷 ∧ (𝑓 Fn 𝑛𝜑𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛𝜑𝜓)) → (𝑓𝑗) = (𝑔𝑗)))
9 biid 261 . 2 (∀𝑘𝑛 (𝑘 E 𝑗[𝑘 / 𝑗]((𝑛𝐷 ∧ (𝑓 Fn 𝑛𝜑𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛𝜑𝜓)) → (𝑓𝑗) = (𝑔𝑗))) ↔ ∀𝑘𝑛 (𝑘 E 𝑗[𝑘 / 𝑗]((𝑛𝐷 ∧ (𝑓 Fn 𝑛𝜑𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛𝜑𝜓)) → (𝑓𝑗) = (𝑔𝑗))))
101, 2, 3, 4, 5, 6, 7, 8, 9bnj580 34889 1 (𝑛𝐷 → ∃*𝑓(𝑓 Fn 𝑛𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108  ∃*wmo 2541  wral 3067  [wsbc 3804  cdif 3973  c0 4352  {csn 4648   ciun 5015   class class class wbr 5166   E cep 5598  suc csuc 6397   Fn wfn 6568  cfv 6573  ωcom 7903   predc-bnj14 34664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-om 7904  df-bnj17 34663
This theorem is referenced by:  bnj600  34895
  Copyright terms: Public domain W3C validator