Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj579 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 32801. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj579.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj579.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj579.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
Ref | Expression |
---|---|
bnj579 | ⊢ (𝑛 ∈ 𝐷 → ∃*𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj579.1 | . 2 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
2 | bnj579.2 | . 2 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
3 | biid 260 | . 2 ⊢ ((𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
4 | biid 260 | . 2 ⊢ ([𝑔 / 𝑓]𝜑 ↔ [𝑔 / 𝑓]𝜑) | |
5 | biid 260 | . 2 ⊢ ([𝑔 / 𝑓]𝜓 ↔ [𝑔 / 𝑓]𝜓) | |
6 | biid 260 | . 2 ⊢ ([𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ [𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
7 | bnj579.3 | . 2 ⊢ 𝐷 = (ω ∖ {∅}) | |
8 | biid 260 | . 2 ⊢ (((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) → (𝑓‘𝑗) = (𝑔‘𝑗)) ↔ ((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) → (𝑓‘𝑗) = (𝑔‘𝑗))) | |
9 | biid 260 | . 2 ⊢ (∀𝑘 ∈ 𝑛 (𝑘 E 𝑗 → [𝑘 / 𝑗]((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) → (𝑓‘𝑗) = (𝑔‘𝑗))) ↔ ∀𝑘 ∈ 𝑛 (𝑘 E 𝑗 → [𝑘 / 𝑗]((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) → (𝑓‘𝑗) = (𝑔‘𝑗)))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | bnj580 32793 | 1 ⊢ (𝑛 ∈ 𝐷 → ∃*𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃*wmo 2538 ∀wral 3063 [wsbc 3711 ∖ cdif 3880 ∅c0 4253 {csn 4558 ∪ ciun 4921 class class class wbr 5070 E cep 5485 suc csuc 6253 Fn wfn 6413 ‘cfv 6418 ωcom 7687 predc-bnj14 32567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-om 7688 df-bnj17 32566 |
This theorem is referenced by: bnj600 32799 |
Copyright terms: Public domain | W3C validator |