![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj579 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 34897. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj579.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj579.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj579.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
Ref | Expression |
---|---|
bnj579 | ⊢ (𝑛 ∈ 𝐷 → ∃*𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj579.1 | . 2 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
2 | bnj579.2 | . 2 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
3 | biid 261 | . 2 ⊢ ((𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
4 | biid 261 | . 2 ⊢ ([𝑔 / 𝑓]𝜑 ↔ [𝑔 / 𝑓]𝜑) | |
5 | biid 261 | . 2 ⊢ ([𝑔 / 𝑓]𝜓 ↔ [𝑔 / 𝑓]𝜓) | |
6 | biid 261 | . 2 ⊢ ([𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ [𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
7 | bnj579.3 | . 2 ⊢ 𝐷 = (ω ∖ {∅}) | |
8 | biid 261 | . 2 ⊢ (((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) → (𝑓‘𝑗) = (𝑔‘𝑗)) ↔ ((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) → (𝑓‘𝑗) = (𝑔‘𝑗))) | |
9 | biid 261 | . 2 ⊢ (∀𝑘 ∈ 𝑛 (𝑘 E 𝑗 → [𝑘 / 𝑗]((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) → (𝑓‘𝑗) = (𝑔‘𝑗))) ↔ ∀𝑘 ∈ 𝑛 (𝑘 E 𝑗 → [𝑘 / 𝑗]((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) → (𝑓‘𝑗) = (𝑔‘𝑗)))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | bnj580 34889 | 1 ⊢ (𝑛 ∈ 𝐷 → ∃*𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃*wmo 2541 ∀wral 3067 [wsbc 3804 ∖ cdif 3973 ∅c0 4352 {csn 4648 ∪ ciun 5015 class class class wbr 5166 E cep 5598 suc csuc 6397 Fn wfn 6568 ‘cfv 6573 ωcom 7903 predc-bnj14 34664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 df-om 7904 df-bnj17 34663 |
This theorem is referenced by: bnj600 34895 |
Copyright terms: Public domain | W3C validator |