Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj579 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 32880. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj579.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
bnj579.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj579.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
Ref | Expression |
---|---|
bnj579 | ⊢ (𝑛 ∈ 𝐷 → ∃*𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj579.1 | . 2 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | |
2 | bnj579.2 | . 2 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
3 | biid 260 | . 2 ⊢ ((𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
4 | biid 260 | . 2 ⊢ ([𝑔 / 𝑓]𝜑 ↔ [𝑔 / 𝑓]𝜑) | |
5 | biid 260 | . 2 ⊢ ([𝑔 / 𝑓]𝜓 ↔ [𝑔 / 𝑓]𝜓) | |
6 | biid 260 | . 2 ⊢ ([𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ [𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
7 | bnj579.3 | . 2 ⊢ 𝐷 = (ω ∖ {∅}) | |
8 | biid 260 | . 2 ⊢ (((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) → (𝑓‘𝑗) = (𝑔‘𝑗)) ↔ ((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) → (𝑓‘𝑗) = (𝑔‘𝑗))) | |
9 | biid 260 | . 2 ⊢ (∀𝑘 ∈ 𝑛 (𝑘 E 𝑗 → [𝑘 / 𝑗]((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) → (𝑓‘𝑗) = (𝑔‘𝑗))) ↔ ∀𝑘 ∈ 𝑛 (𝑘 E 𝑗 → [𝑘 / 𝑗]((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ [𝑔 / 𝑓](𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) → (𝑓‘𝑗) = (𝑔‘𝑗)))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | bnj580 32872 | 1 ⊢ (𝑛 ∈ 𝐷 → ∃*𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ∃*wmo 2539 ∀wral 3065 [wsbc 3719 ∖ cdif 3888 ∅c0 4261 {csn 4566 ∪ ciun 4929 class class class wbr 5078 E cep 5493 suc csuc 6265 Fn wfn 6425 ‘cfv 6430 ωcom 7700 predc-bnj14 32646 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-fv 6438 df-om 7701 df-bnj17 32645 |
This theorem is referenced by: bnj600 32878 |
Copyright terms: Public domain | W3C validator |