![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1529 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj1522 32021. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1529.1 | ⊢ (𝜒 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
bnj1529.2 | ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) |
Ref | Expression |
---|---|
bnj1529 | ⊢ (𝜒 → ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1529.1 | . 2 ⊢ (𝜒 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) | |
2 | nfv 1874 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) | |
3 | bnj1529.2 | . . . . . 6 ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) | |
4 | 3 | nfcii 2913 | . . . . 5 ⊢ Ⅎ𝑥𝐹 |
5 | nfcv 2925 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
6 | 4, 5 | nffv 6506 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
7 | nfcv 2925 | . . . . 5 ⊢ Ⅎ𝑥𝐺 | |
8 | nfcv 2925 | . . . . . . 7 ⊢ Ⅎ𝑥 pred(𝑦, 𝐴, 𝑅) | |
9 | 4, 8 | nfres 5694 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹 ↾ pred(𝑦, 𝐴, 𝑅)) |
10 | 5, 9 | nfop 4689 | . . . . 5 ⊢ Ⅎ𝑥〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉 |
11 | 7, 10 | nffv 6506 | . . . 4 ⊢ Ⅎ𝑥(𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉) |
12 | 6, 11 | nfeq 2936 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉) |
13 | fveq2 6496 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
14 | id 22 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
15 | bnj602 31866 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → pred(𝑥, 𝐴, 𝑅) = pred(𝑦, 𝐴, 𝑅)) | |
16 | 15 | reseq2d 5692 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝐹 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))) |
17 | 14, 16 | opeq12d 4681 | . . . . 5 ⊢ (𝑥 = 𝑦 → 〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉 = 〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉) |
18 | 17 | fveq2d 6500 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
19 | 13, 18 | eqeq12d 2786 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) ↔ (𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉))) |
20 | 2, 12, 19 | cbvral 3372 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) ↔ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
21 | 1, 20 | sylib 210 | 1 ⊢ (𝜒 → ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1506 = wceq 1508 ∈ wcel 2051 ∀wral 3081 〈cop 4441 ↾ cres 5405 ‘cfv 6185 predc-bnj14 31638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-xp 5409 df-res 5415 df-iota 6149 df-fv 6193 df-bnj14 31639 |
This theorem is referenced by: bnj1523 32020 |
Copyright terms: Public domain | W3C validator |