| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1529 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj1522 35069. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1529.1 | ⊢ (𝜒 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
| bnj1529.2 | ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| bnj1529 | ⊢ (𝜒 → ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1529.1 | . 2 ⊢ (𝜒 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) | |
| 2 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) | |
| 3 | bnj1529.2 | . . . . . 6 ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) | |
| 4 | 3 | nfcii 2881 | . . . . 5 ⊢ Ⅎ𝑥𝐹 |
| 5 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 6 | 4, 5 | nffv 6871 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
| 7 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥𝐺 | |
| 8 | nfcv 2892 | . . . . . . 7 ⊢ Ⅎ𝑥 pred(𝑦, 𝐴, 𝑅) | |
| 9 | 4, 8 | nfres 5955 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹 ↾ pred(𝑦, 𝐴, 𝑅)) |
| 10 | 5, 9 | nfop 4856 | . . . . 5 ⊢ Ⅎ𝑥〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉 |
| 11 | 7, 10 | nffv 6871 | . . . 4 ⊢ Ⅎ𝑥(𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉) |
| 12 | 6, 11 | nfeq 2906 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉) |
| 13 | fveq2 6861 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 14 | id 22 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 15 | bnj602 34912 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → pred(𝑥, 𝐴, 𝑅) = pred(𝑦, 𝐴, 𝑅)) | |
| 16 | 15 | reseq2d 5953 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝐹 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))) |
| 17 | 14, 16 | opeq12d 4848 | . . . . 5 ⊢ (𝑥 = 𝑦 → 〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉 = 〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉) |
| 18 | 17 | fveq2d 6865 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
| 19 | 13, 18 | eqeq12d 2746 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) ↔ (𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉))) |
| 20 | 2, 12, 19 | cbvralw 3282 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) ↔ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
| 21 | 1, 20 | sylib 218 | 1 ⊢ (𝜒 → ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∀wral 3045 〈cop 4598 ↾ cres 5643 ‘cfv 6514 predc-bnj14 34685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-res 5653 df-iota 6467 df-fv 6522 df-bnj14 34686 |
| This theorem is referenced by: bnj1523 35068 |
| Copyright terms: Public domain | W3C validator |