![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1529 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj1522 35065. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1529.1 | ⊢ (𝜒 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
bnj1529.2 | ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) |
Ref | Expression |
---|---|
bnj1529 | ⊢ (𝜒 → ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1529.1 | . 2 ⊢ (𝜒 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) | |
2 | nfv 1912 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) | |
3 | bnj1529.2 | . . . . . 6 ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) | |
4 | 3 | nfcii 2892 | . . . . 5 ⊢ Ⅎ𝑥𝐹 |
5 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
6 | 4, 5 | nffv 6917 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
7 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑥𝐺 | |
8 | nfcv 2903 | . . . . . . 7 ⊢ Ⅎ𝑥 pred(𝑦, 𝐴, 𝑅) | |
9 | 4, 8 | nfres 6002 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹 ↾ pred(𝑦, 𝐴, 𝑅)) |
10 | 5, 9 | nfop 4894 | . . . . 5 ⊢ Ⅎ𝑥〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉 |
11 | 7, 10 | nffv 6917 | . . . 4 ⊢ Ⅎ𝑥(𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉) |
12 | 6, 11 | nfeq 2917 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉) |
13 | fveq2 6907 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
14 | id 22 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
15 | bnj602 34908 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → pred(𝑥, 𝐴, 𝑅) = pred(𝑦, 𝐴, 𝑅)) | |
16 | 15 | reseq2d 6000 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝐹 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))) |
17 | 14, 16 | opeq12d 4886 | . . . . 5 ⊢ (𝑥 = 𝑦 → 〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉 = 〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉) |
18 | 17 | fveq2d 6911 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
19 | 13, 18 | eqeq12d 2751 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) ↔ (𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉))) |
20 | 2, 12, 19 | cbvralw 3304 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) ↔ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
21 | 1, 20 | sylib 218 | 1 ⊢ (𝜒 → ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 = wceq 1537 ∈ wcel 2106 ∀wral 3059 〈cop 4637 ↾ cres 5691 ‘cfv 6563 predc-bnj14 34681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-res 5701 df-iota 6516 df-fv 6571 df-bnj14 34682 |
This theorem is referenced by: bnj1523 35064 |
Copyright terms: Public domain | W3C validator |