Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1529 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj1522 33052. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1529.1 | ⊢ (𝜒 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
bnj1529.2 | ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) |
Ref | Expression |
---|---|
bnj1529 | ⊢ (𝜒 → ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1529.1 | . 2 ⊢ (𝜒 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) | |
2 | nfv 1917 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) | |
3 | bnj1529.2 | . . . . . 6 ⊢ (𝑤 ∈ 𝐹 → ∀𝑥 𝑤 ∈ 𝐹) | |
4 | 3 | nfcii 2891 | . . . . 5 ⊢ Ⅎ𝑥𝐹 |
5 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
6 | 4, 5 | nffv 6784 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
7 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑥𝐺 | |
8 | nfcv 2907 | . . . . . . 7 ⊢ Ⅎ𝑥 pred(𝑦, 𝐴, 𝑅) | |
9 | 4, 8 | nfres 5893 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹 ↾ pred(𝑦, 𝐴, 𝑅)) |
10 | 5, 9 | nfop 4820 | . . . . 5 ⊢ Ⅎ𝑥〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉 |
11 | 7, 10 | nffv 6784 | . . . 4 ⊢ Ⅎ𝑥(𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉) |
12 | 6, 11 | nfeq 2920 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉) |
13 | fveq2 6774 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
14 | id 22 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
15 | bnj602 32895 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → pred(𝑥, 𝐴, 𝑅) = pred(𝑦, 𝐴, 𝑅)) | |
16 | 15 | reseq2d 5891 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝐹 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))) |
17 | 14, 16 | opeq12d 4812 | . . . . 5 ⊢ (𝑥 = 𝑦 → 〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉 = 〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉) |
18 | 17 | fveq2d 6778 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
19 | 13, 18 | eqeq12d 2754 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) ↔ (𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉))) |
20 | 2, 12, 19 | cbvralw 3373 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉) ↔ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
21 | 1, 20 | sylib 217 | 1 ⊢ (𝜒 → ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) = (𝐺‘〈𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ∀wral 3064 〈cop 4567 ↾ cres 5591 ‘cfv 6433 predc-bnj14 32667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-res 5601 df-iota 6391 df-fv 6441 df-bnj14 32668 |
This theorem is referenced by: bnj1523 33051 |
Copyright terms: Public domain | W3C validator |