Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1529 Structured version   Visualization version   GIF version

Theorem bnj1529 35053
Description: Technical lemma for bnj1522 35055. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1529.1 (𝜒 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
bnj1529.2 (𝑤𝐹 → ∀𝑥 𝑤𝐹)
Assertion
Ref Expression
bnj1529 (𝜒 → ∀𝑦𝐴 (𝐹𝑦) = (𝐺‘⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
Distinct variable groups:   𝑤,𝐴,𝑥,𝑦   𝑤,𝐹,𝑦   𝑤,𝐺,𝑥,𝑦   𝑤,𝑅,𝑥,𝑦
Allowed substitution hints:   𝜒(𝑥,𝑦,𝑤)   𝐹(𝑥)

Proof of Theorem bnj1529
StepHypRef Expression
1 bnj1529.1 . 2 (𝜒 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩))
2 nfv 1914 . . 3 𝑦(𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩)
3 bnj1529.2 . . . . . 6 (𝑤𝐹 → ∀𝑥 𝑤𝐹)
43nfcii 2880 . . . . 5 𝑥𝐹
5 nfcv 2891 . . . . 5 𝑥𝑦
64, 5nffv 6850 . . . 4 𝑥(𝐹𝑦)
7 nfcv 2891 . . . . 5 𝑥𝐺
8 nfcv 2891 . . . . . . 7 𝑥 pred(𝑦, 𝐴, 𝑅)
94, 8nfres 5941 . . . . . 6 𝑥(𝐹 ↾ pred(𝑦, 𝐴, 𝑅))
105, 9nfop 4849 . . . . 5 𝑥𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩
117, 10nffv 6850 . . . 4 𝑥(𝐺‘⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩)
126, 11nfeq 2905 . . 3 𝑥(𝐹𝑦) = (𝐺‘⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩)
13 fveq2 6840 . . . 4 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
14 id 22 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
15 bnj602 34898 . . . . . . 7 (𝑥 = 𝑦 → pred(𝑥, 𝐴, 𝑅) = pred(𝑦, 𝐴, 𝑅))
1615reseq2d 5939 . . . . . 6 (𝑥 = 𝑦 → (𝐹 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝐹 ↾ pred(𝑦, 𝐴, 𝑅)))
1714, 16opeq12d 4841 . . . . 5 (𝑥 = 𝑦 → ⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩)
1817fveq2d 6844 . . . 4 (𝑥 = 𝑦 → (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) = (𝐺‘⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
1913, 18eqeq12d 2745 . . 3 (𝑥 = 𝑦 → ((𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) ↔ (𝐹𝑦) = (𝐺‘⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩)))
202, 12, 19cbvralw 3278 . 2 (∀𝑥𝐴 (𝐹𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩) ↔ ∀𝑦𝐴 (𝐹𝑦) = (𝐺‘⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
211, 20sylib 218 1 (𝜒 → ∀𝑦𝐴 (𝐹𝑦) = (𝐺‘⟨𝑦, (𝐹 ↾ pred(𝑦, 𝐴, 𝑅))⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538   = wceq 1540  wcel 2109  wral 3044  cop 4591  cres 5633  cfv 6499   predc-bnj14 34671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-res 5643  df-iota 6452  df-fv 6507  df-bnj14 34672
This theorem is referenced by:  bnj1523  35054
  Copyright terms: Public domain W3C validator