Step | Hyp | Ref
| Expression |
1 | | bnj601.1 |
. 2
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
2 | | bnj601.2 |
. 2
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
3 | | bnj601.3 |
. 2
⊢ 𝐷 = (ω ∖
{∅}) |
4 | | bnj601.4 |
. 2
⊢ (𝜒 ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
5 | | bnj601.5 |
. 2
⊢ (𝜃 ↔ ∀𝑚 ∈ 𝐷 (𝑚 E 𝑛 → [𝑚 / 𝑛]𝜒)) |
6 | | biid 260 |
. 2
⊢
([𝑚 / 𝑛]𝜑 ↔ [𝑚 / 𝑛]𝜑) |
7 | | biid 260 |
. 2
⊢
([𝑚 / 𝑛]𝜓 ↔ [𝑚 / 𝑛]𝜓) |
8 | | biid 260 |
. 2
⊢
([𝑚 / 𝑛]𝜒 ↔ [𝑚 / 𝑛]𝜒) |
9 | | bnj602 32874 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → pred(𝑦, 𝐴, 𝑅) = pred(𝑧, 𝐴, 𝑅)) |
10 | 9 | cbviunv 4974 |
. . . . . 6
⊢ ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) = ∪
𝑧 ∈ (𝑓‘𝑝) pred(𝑧, 𝐴, 𝑅) |
11 | 10 | opeq2i 4813 |
. . . . 5
⊢
〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉 = 〈𝑚, ∪ 𝑧 ∈ (𝑓‘𝑝) pred(𝑧, 𝐴, 𝑅)〉 |
12 | 11 | sneqi 4577 |
. . . 4
⊢
{〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉} = {〈𝑚, ∪ 𝑧 ∈ (𝑓‘𝑝) pred(𝑧, 𝐴, 𝑅)〉} |
13 | 12 | uneq2i 4098 |
. . 3
⊢ (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) = (𝑓 ∪ {〈𝑚, ∪ 𝑧 ∈ (𝑓‘𝑝) pred(𝑧, 𝐴, 𝑅)〉}) |
14 | | dfsbcq 3721 |
. . 3
⊢ ((𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) = (𝑓 ∪ {〈𝑚, ∪ 𝑧 ∈ (𝑓‘𝑝) pred(𝑧, 𝐴, 𝑅)〉}) → ([(𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) / 𝑓]𝜑 ↔ [(𝑓 ∪ {〈𝑚, ∪ 𝑧 ∈ (𝑓‘𝑝) pred(𝑧, 𝐴, 𝑅)〉}) / 𝑓]𝜑)) |
15 | 13, 14 | ax-mp 5 |
. 2
⊢
([(𝑓 ∪
{〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) / 𝑓]𝜑 ↔ [(𝑓 ∪ {〈𝑚, ∪ 𝑧 ∈ (𝑓‘𝑝) pred(𝑧, 𝐴, 𝑅)〉}) / 𝑓]𝜑) |
16 | | dfsbcq 3721 |
. . 3
⊢ ((𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) = (𝑓 ∪ {〈𝑚, ∪ 𝑧 ∈ (𝑓‘𝑝) pred(𝑧, 𝐴, 𝑅)〉}) → ([(𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) / 𝑓]𝜓 ↔ [(𝑓 ∪ {〈𝑚, ∪ 𝑧 ∈ (𝑓‘𝑝) pred(𝑧, 𝐴, 𝑅)〉}) / 𝑓]𝜓)) |
17 | 13, 16 | ax-mp 5 |
. 2
⊢
([(𝑓 ∪
{〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) / 𝑓]𝜓 ↔ [(𝑓 ∪ {〈𝑚, ∪ 𝑧 ∈ (𝑓‘𝑝) pred(𝑧, 𝐴, 𝑅)〉}) / 𝑓]𝜓) |
18 | | dfsbcq 3721 |
. . 3
⊢ ((𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) = (𝑓 ∪ {〈𝑚, ∪ 𝑧 ∈ (𝑓‘𝑝) pred(𝑧, 𝐴, 𝑅)〉}) → ([(𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) / 𝑓]𝜒 ↔ [(𝑓 ∪ {〈𝑚, ∪ 𝑧 ∈ (𝑓‘𝑝) pred(𝑧, 𝐴, 𝑅)〉}) / 𝑓]𝜒)) |
19 | 13, 18 | ax-mp 5 |
. 2
⊢
([(𝑓 ∪
{〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) / 𝑓]𝜒 ↔ [(𝑓 ∪ {〈𝑚, ∪ 𝑧 ∈ (𝑓‘𝑝) pred(𝑧, 𝐴, 𝑅)〉}) / 𝑓]𝜒) |
20 | 13 | eqcomi 2748 |
. 2
⊢ (𝑓 ∪ {〈𝑚, ∪ 𝑧 ∈ (𝑓‘𝑝) pred(𝑧, 𝐴, 𝑅)〉}) = (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) |
21 | | biid 260 |
. 2
⊢ ((𝑓 Fn 𝑚 ∧ [𝑚 / 𝑛]𝜑 ∧ [𝑚 / 𝑛]𝜓) ↔ (𝑓 Fn 𝑚 ∧ [𝑚 / 𝑛]𝜑 ∧ [𝑚 / 𝑛]𝜓)) |
22 | | biid 260 |
. 2
⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚) ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
23 | | biid 260 |
. 2
⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) |
24 | | biid 260 |
. 2
⊢ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖) ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖)) |
25 | | biid 260 |
. 2
⊢ ((𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖) ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖)) |
26 | | eqid 2739 |
. 2
⊢ ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪
𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅) |
27 | | eqid 2739 |
. 2
⊢ ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) = ∪
𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅) |
28 | | eqid 2739 |
. 2
⊢ ∪ 𝑦 ∈ ((𝑓 ∪ {〈𝑚, ∪ 𝑧 ∈ (𝑓‘𝑝) pred(𝑧, 𝐴, 𝑅)〉})‘𝑖) pred(𝑦, 𝐴, 𝑅) = ∪
𝑦 ∈ ((𝑓 ∪ {〈𝑚, ∪ 𝑧 ∈ (𝑓‘𝑝) pred(𝑧, 𝐴, 𝑅)〉})‘𝑖) pred(𝑦, 𝐴, 𝑅) |
29 | | eqid 2739 |
. 2
⊢ ∪ 𝑦 ∈ ((𝑓 ∪ {〈𝑚, ∪ 𝑧 ∈ (𝑓‘𝑝) pred(𝑧, 𝐴, 𝑅)〉})‘𝑝) pred(𝑦, 𝐴, 𝑅) = ∪
𝑦 ∈ ((𝑓 ∪ {〈𝑚, ∪ 𝑧 ∈ (𝑓‘𝑝) pred(𝑧, 𝐴, 𝑅)〉})‘𝑝) pred(𝑦, 𝐴, 𝑅) |
30 | 1, 2, 3, 4, 5, 6, 7, 8, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 20 | bnj600 32878 |
1
⊢ (𝑛 ≠ 1o →
((𝑛 ∈ 𝐷 ∧ 𝜃) → 𝜒)) |