Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj601 Structured version   Visualization version   GIF version

Theorem bnj601 32567
Description: Technical lemma for bnj852 32568. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj601.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj601.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj601.3 𝐷 = (ω ∖ {∅})
bnj601.4 (𝜒 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
bnj601.5 (𝜃 ↔ ∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜒))
Assertion
Ref Expression
bnj601 (𝑛 ≠ 1o → ((𝑛𝐷𝜃) → 𝜒))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑚,𝑛,𝑦   𝐷,𝑓,𝑖   𝑅,𝑓,𝑖,𝑚,𝑛,𝑦   𝑥,𝑓,𝑚,𝑛   𝜑,𝑖,𝑚   𝜓,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑛)   𝜓(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜒(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜃(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝐴(𝑥)   𝐷(𝑥,𝑦,𝑚,𝑛)   𝑅(𝑥)

Proof of Theorem bnj601
Dummy variables 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj601.1 . 2 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
2 bnj601.2 . 2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 bnj601.3 . 2 𝐷 = (ω ∖ {∅})
4 bnj601.4 . 2 (𝜒 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
5 bnj601.5 . 2 (𝜃 ↔ ∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜒))
6 biid 264 . 2 ([𝑚 / 𝑛]𝜑[𝑚 / 𝑛]𝜑)
7 biid 264 . 2 ([𝑚 / 𝑛]𝜓[𝑚 / 𝑛]𝜓)
8 biid 264 . 2 ([𝑚 / 𝑛]𝜒[𝑚 / 𝑛]𝜒)
9 bnj602 32562 . . . . . . 7 (𝑦 = 𝑧 → pred(𝑦, 𝐴, 𝑅) = pred(𝑧, 𝐴, 𝑅))
109cbviunv 4935 . . . . . 6 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) = 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)
1110opeq2i 4774 . . . . 5 𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩ = ⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩
1211sneqi 4538 . . . 4 {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩} = {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}
1312uneq2i 4060 . . 3 (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) = (𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩})
14 dfsbcq 3685 . . 3 ((𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) = (𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) → ([(𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓]𝜑[(𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) / 𝑓]𝜑))
1513, 14ax-mp 5 . 2 ([(𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓]𝜑[(𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) / 𝑓]𝜑)
16 dfsbcq 3685 . . 3 ((𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) = (𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) → ([(𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓]𝜓[(𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) / 𝑓]𝜓))
1713, 16ax-mp 5 . 2 ([(𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓]𝜓[(𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) / 𝑓]𝜓)
18 dfsbcq 3685 . . 3 ((𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) = (𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) → ([(𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓]𝜒[(𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) / 𝑓]𝜒))
1913, 18ax-mp 5 . 2 ([(𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓]𝜒[(𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) / 𝑓]𝜒)
2013eqcomi 2745 . 2 (𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
21 biid 264 . 2 ((𝑓 Fn 𝑚[𝑚 / 𝑛]𝜑[𝑚 / 𝑛]𝜓) ↔ (𝑓 Fn 𝑚[𝑚 / 𝑛]𝜑[𝑚 / 𝑛]𝜓))
22 biid 264 . 2 ((𝑚𝐷𝑛 = suc 𝑚𝑝𝑚) ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
23 biid 264 . 2 ((𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
24 biid 264 . 2 ((𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖) ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
25 biid 264 . 2 ((𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖) ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖))
26 eqid 2736 . 2 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
27 eqid 2736 . 2 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
28 eqid 2736 . 2 𝑦 ∈ ((𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩})‘𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ ((𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩})‘𝑖) pred(𝑦, 𝐴, 𝑅)
29 eqid 2736 . 2 𝑦 ∈ ((𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩})‘𝑝) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ ((𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩})‘𝑝) pred(𝑦, 𝐴, 𝑅)
301, 2, 3, 4, 5, 6, 7, 8, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 20bnj600 32566 1 (𝑛 ≠ 1o → ((𝑛𝐷𝜃) → 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  ∃!weu 2567  wne 2932  wral 3051  [wsbc 3683  cdif 3850  cun 3851  c0 4223  {csn 4527  cop 4533   ciun 4890   class class class wbr 5039   E cep 5444  suc csuc 6193   Fn wfn 6353  cfv 6358  ωcom 7622  1oc1o 8173  w-bnj17 32331   predc-bnj14 32333   FrSe w-bnj15 32337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501  ax-reg 9186
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-om 7623  df-1o 8180  df-bnj17 32332  df-bnj14 32334  df-bnj13 32336  df-bnj15 32338
This theorem is referenced by:  bnj852  32568
  Copyright terms: Public domain W3C validator