Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj601 Structured version   Visualization version   GIF version

Theorem bnj601 32949
Description: Technical lemma for bnj852 32950. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj601.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj601.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj601.3 𝐷 = (ω ∖ {∅})
bnj601.4 (𝜒 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
bnj601.5 (𝜃 ↔ ∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜒))
Assertion
Ref Expression
bnj601 (𝑛 ≠ 1o → ((𝑛𝐷𝜃) → 𝜒))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑚,𝑛,𝑦   𝐷,𝑓,𝑖   𝑅,𝑓,𝑖,𝑚,𝑛,𝑦   𝑥,𝑓,𝑚,𝑛   𝜑,𝑖,𝑚   𝜓,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑛)   𝜓(𝑥,𝑦,𝑓,𝑖,𝑛)   𝜒(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜃(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝐴(𝑥)   𝐷(𝑥,𝑦,𝑚,𝑛)   𝑅(𝑥)

Proof of Theorem bnj601
Dummy variables 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bnj601.1 . 2 (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
2 bnj601.2 . 2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 bnj601.3 . 2 𝐷 = (ω ∖ {∅})
4 bnj601.4 . 2 (𝜒 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
5 bnj601.5 . 2 (𝜃 ↔ ∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜒))
6 biid 261 . 2 ([𝑚 / 𝑛]𝜑[𝑚 / 𝑛]𝜑)
7 biid 261 . 2 ([𝑚 / 𝑛]𝜓[𝑚 / 𝑛]𝜓)
8 biid 261 . 2 ([𝑚 / 𝑛]𝜒[𝑚 / 𝑛]𝜒)
9 bnj602 32944 . . . . . . 7 (𝑦 = 𝑧 → pred(𝑦, 𝐴, 𝑅) = pred(𝑧, 𝐴, 𝑅))
109cbviunv 4977 . . . . . 6 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) = 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)
1110opeq2i 4813 . . . . 5 𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩ = ⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩
1211sneqi 4576 . . . 4 {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩} = {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}
1312uneq2i 4100 . . 3 (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) = (𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩})
14 dfsbcq 3723 . . 3 ((𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) = (𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) → ([(𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓]𝜑[(𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) / 𝑓]𝜑))
1513, 14ax-mp 5 . 2 ([(𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓]𝜑[(𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) / 𝑓]𝜑)
16 dfsbcq 3723 . . 3 ((𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) = (𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) → ([(𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓]𝜓[(𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) / 𝑓]𝜓))
1713, 16ax-mp 5 . 2 ([(𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓]𝜓[(𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) / 𝑓]𝜓)
18 dfsbcq 3723 . . 3 ((𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) = (𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) → ([(𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓]𝜒[(𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) / 𝑓]𝜒))
1913, 18ax-mp 5 . 2 ([(𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) / 𝑓]𝜒[(𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) / 𝑓]𝜒)
2013eqcomi 2745 . 2 (𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩}) = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
21 biid 261 . 2 ((𝑓 Fn 𝑚[𝑚 / 𝑛]𝜑[𝑚 / 𝑛]𝜓) ↔ (𝑓 Fn 𝑚[𝑚 / 𝑛]𝜑[𝑚 / 𝑛]𝜓))
22 biid 261 . 2 ((𝑚𝐷𝑛 = suc 𝑚𝑝𝑚) ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
23 biid 261 . 2 ((𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
24 biid 261 . 2 ((𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖) ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
25 biid 261 . 2 ((𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖) ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖))
26 eqid 2736 . 2 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
27 eqid 2736 . 2 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
28 eqid 2736 . 2 𝑦 ∈ ((𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩})‘𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ ((𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩})‘𝑖) pred(𝑦, 𝐴, 𝑅)
29 eqid 2736 . 2 𝑦 ∈ ((𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩})‘𝑝) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ ((𝑓 ∪ {⟨𝑚, 𝑧 ∈ (𝑓𝑝) pred(𝑧, 𝐴, 𝑅)⟩})‘𝑝) pred(𝑦, 𝐴, 𝑅)
301, 2, 3, 4, 5, 6, 7, 8, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 20bnj600 32948 1 (𝑛 ≠ 1o → ((𝑛𝐷𝜃) → 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104  ∃!weu 2566  wne 2941  wral 3062  [wsbc 3721  cdif 3889  cun 3890  c0 4262  {csn 4565  cop 4571   ciun 4931   class class class wbr 5081   E cep 5505  suc csuc 6283   Fn wfn 6453  cfv 6458  ωcom 7744  1oc1o 8321  w-bnj17 32714   predc-bnj14 32716   FrSe w-bnj15 32720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620  ax-reg 9399
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-fv 6466  df-om 7745  df-1o 8328  df-bnj17 32715  df-bnj14 32717  df-bnj13 32719  df-bnj15 32721
This theorem is referenced by:  bnj852  32950
  Copyright terms: Public domain W3C validator