![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlmngp | Structured version Visualization version GIF version |
Description: A normed module is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nlmngp | β’ (π β NrmMod β π β NrmGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
2 | eqid 2732 | . . . 4 β’ (normβπ) = (normβπ) | |
3 | eqid 2732 | . . . 4 β’ ( Β·π βπ) = ( Β·π βπ) | |
4 | eqid 2732 | . . . 4 β’ (Scalarβπ) = (Scalarβπ) | |
5 | eqid 2732 | . . . 4 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
6 | eqid 2732 | . . . 4 β’ (normβ(Scalarβπ)) = (normβ(Scalarβπ)) | |
7 | 1, 2, 3, 4, 5, 6 | isnlm 24191 | . . 3 β’ (π β NrmMod β ((π β NrmGrp β§ π β LMod β§ (Scalarβπ) β NrmRing) β§ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β (Baseβπ)((normβπ)β(π₯( Β·π βπ)π¦)) = (((normβ(Scalarβπ))βπ₯) Β· ((normβπ)βπ¦)))) |
8 | 7 | simplbi 498 | . 2 β’ (π β NrmMod β (π β NrmGrp β§ π β LMod β§ (Scalarβπ) β NrmRing)) |
9 | 8 | simp1d 1142 | 1 β’ (π β NrmMod β π β NrmGrp) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 βcfv 6543 (class class class)co 7408 Β· cmul 11114 Basecbs 17143 Scalarcsca 17199 Β·π cvsca 17200 LModclmod 20470 normcnm 24084 NrmGrpcngp 24085 NrmRingcnrg 24087 NrmModcnlm 24088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 df-nlm 24094 |
This theorem is referenced by: nlmdsdi 24197 nlmdsdir 24198 nlmmul0or 24199 nlmvscnlem2 24201 nlmvscnlem1 24202 nlmvscn 24203 nlmtlm 24210 lssnlm 24217 ngpocelbl 24220 isnmhm2 24268 idnmhm 24270 0nmhm 24271 nmoleub2lem 24629 nmoleub2lem3 24630 nmoleub2lem2 24631 nmoleub3 24634 nmhmcn 24635 ncvsm1 24670 ncvsdif 24671 ncvspi 24672 ncvs1 24673 ncvspds 24677 cphngp 24689 ipcnlem2 24760 ipcnlem1 24761 csscld 24765 bnngp 24858 cssbn 24891 |
Copyright terms: Public domain | W3C validator |