| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nlmngp | Structured version Visualization version GIF version | ||
| Description: A normed module is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| nlmngp | ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | eqid 2729 | . . . 4 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
| 3 | eqid 2729 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 4 | eqid 2729 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 5 | eqid 2729 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 6 | eqid 2729 | . . . 4 ⊢ (norm‘(Scalar‘𝑊)) = (norm‘(Scalar‘𝑊)) | |
| 7 | 1, 2, 3, 4, 5, 6 | isnlm 24596 | . . 3 ⊢ (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑦 ∈ (Base‘𝑊)((norm‘𝑊)‘(𝑥( ·𝑠 ‘𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦)))) |
| 8 | 7 | simplbi 497 | . 2 ⊢ (𝑊 ∈ NrmMod → (𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NrmRing)) |
| 9 | 8 | simp1d 1142 | 1 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6499 (class class class)co 7369 · cmul 11049 Basecbs 17155 Scalarcsca 17199 ·𝑠 cvsca 17200 LModclmod 20798 normcnm 24497 NrmGrpcngp 24498 NrmRingcnrg 24500 NrmModcnlm 24501 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-nlm 24507 |
| This theorem is referenced by: nlmdsdi 24602 nlmdsdir 24603 nlmmul0or 24604 nlmvscnlem2 24606 nlmvscnlem1 24607 nlmvscn 24608 nlmtlm 24615 lssnlm 24622 ngpocelbl 24625 isnmhm2 24673 idnmhm 24675 0nmhm 24676 nmoleub2lem 25047 nmoleub2lem3 25048 nmoleub2lem2 25049 nmoleub3 25052 nmhmcn 25053 ncvsm1 25087 ncvsdif 25088 ncvspi 25089 ncvs1 25090 ncvspds 25094 cphngp 25106 ipcnlem2 25177 ipcnlem1 25178 csscld 25182 bnngp 25275 cssbn 25308 |
| Copyright terms: Public domain | W3C validator |