![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlmngp | Structured version Visualization version GIF version |
Description: A normed module is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nlmngp | β’ (π β NrmMod β π β NrmGrp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
2 | eqid 2732 | . . . 4 β’ (normβπ) = (normβπ) | |
3 | eqid 2732 | . . . 4 β’ ( Β·π βπ) = ( Β·π βπ) | |
4 | eqid 2732 | . . . 4 β’ (Scalarβπ) = (Scalarβπ) | |
5 | eqid 2732 | . . . 4 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
6 | eqid 2732 | . . . 4 β’ (normβ(Scalarβπ)) = (normβ(Scalarβπ)) | |
7 | 1, 2, 3, 4, 5, 6 | isnlm 24412 | . . 3 β’ (π β NrmMod β ((π β NrmGrp β§ π β LMod β§ (Scalarβπ) β NrmRing) β§ βπ₯ β (Baseβ(Scalarβπ))βπ¦ β (Baseβπ)((normβπ)β(π₯( Β·π βπ)π¦)) = (((normβ(Scalarβπ))βπ₯) Β· ((normβπ)βπ¦)))) |
8 | 7 | simplbi 498 | . 2 β’ (π β NrmMod β (π β NrmGrp β§ π β LMod β§ (Scalarβπ) β NrmRing)) |
9 | 8 | simp1d 1142 | 1 β’ (π β NrmMod β π β NrmGrp) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 βwral 3061 βcfv 6543 (class class class)co 7411 Β· cmul 11117 Basecbs 17148 Scalarcsca 17204 Β·π cvsca 17205 LModclmod 20614 normcnm 24305 NrmGrpcngp 24306 NrmRingcnrg 24308 NrmModcnlm 24309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7414 df-nlm 24315 |
This theorem is referenced by: nlmdsdi 24418 nlmdsdir 24419 nlmmul0or 24420 nlmvscnlem2 24422 nlmvscnlem1 24423 nlmvscn 24424 nlmtlm 24431 lssnlm 24438 ngpocelbl 24441 isnmhm2 24489 idnmhm 24491 0nmhm 24492 nmoleub2lem 24854 nmoleub2lem3 24855 nmoleub2lem2 24856 nmoleub3 24859 nmhmcn 24860 ncvsm1 24895 ncvsdif 24896 ncvspi 24897 ncvs1 24898 ncvspds 24902 cphngp 24914 ipcnlem2 24985 ipcnlem1 24986 csscld 24990 bnngp 25083 cssbn 25116 |
Copyright terms: Public domain | W3C validator |