MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlmngp Structured version   Visualization version   GIF version

Theorem nlmngp 24414
Description: A normed module is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
Assertion
Ref Expression
nlmngp (π‘Š ∈ NrmMod β†’ π‘Š ∈ NrmGrp)

Proof of Theorem nlmngp
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . 4 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
2 eqid 2732 . . . 4 (normβ€˜π‘Š) = (normβ€˜π‘Š)
3 eqid 2732 . . . 4 ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š)
4 eqid 2732 . . . 4 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
5 eqid 2732 . . . 4 (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š))
6 eqid 2732 . . . 4 (normβ€˜(Scalarβ€˜π‘Š)) = (normβ€˜(Scalarβ€˜π‘Š))
71, 2, 3, 4, 5, 6isnlm 24412 . . 3 (π‘Š ∈ NrmMod ↔ ((π‘Š ∈ NrmGrp ∧ π‘Š ∈ LMod ∧ (Scalarβ€˜π‘Š) ∈ NrmRing) ∧ βˆ€π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š))βˆ€π‘¦ ∈ (Baseβ€˜π‘Š)((normβ€˜π‘Š)β€˜(π‘₯( ·𝑠 β€˜π‘Š)𝑦)) = (((normβ€˜(Scalarβ€˜π‘Š))β€˜π‘₯) Β· ((normβ€˜π‘Š)β€˜π‘¦))))
87simplbi 498 . 2 (π‘Š ∈ NrmMod β†’ (π‘Š ∈ NrmGrp ∧ π‘Š ∈ LMod ∧ (Scalarβ€˜π‘Š) ∈ NrmRing))
98simp1d 1142 1 (π‘Š ∈ NrmMod β†’ π‘Š ∈ NrmGrp)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  β€˜cfv 6543  (class class class)co 7411   Β· cmul 11117  Basecbs 17148  Scalarcsca 17204   ·𝑠 cvsca 17205  LModclmod 20614  normcnm 24305  NrmGrpcngp 24306  NrmRingcnrg 24308  NrmModcnlm 24309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7414  df-nlm 24315
This theorem is referenced by:  nlmdsdi  24418  nlmdsdir  24419  nlmmul0or  24420  nlmvscnlem2  24422  nlmvscnlem1  24423  nlmvscn  24424  nlmtlm  24431  lssnlm  24438  ngpocelbl  24441  isnmhm2  24489  idnmhm  24491  0nmhm  24492  nmoleub2lem  24854  nmoleub2lem3  24855  nmoleub2lem2  24856  nmoleub3  24859  nmhmcn  24860  ncvsm1  24895  ncvsdif  24896  ncvspi  24897  ncvs1  24898  ncvspds  24902  cphngp  24914  ipcnlem2  24985  ipcnlem1  24986  csscld  24990  bnngp  25083  cssbn  25116
  Copyright terms: Public domain W3C validator