![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bnsca | Structured version Visualization version GIF version |
Description: The scalar field of a Banach space is complete. (Contributed by NM, 8-Sep-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
isbn.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
bnsca | ⊢ (𝑊 ∈ Ban → 𝐹 ∈ CMetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isbn.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | isbn 25391 | . 2 ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)) |
3 | 2 | simp3bi 1147 | 1 ⊢ (𝑊 ∈ Ban → 𝐹 ∈ CMetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 Scalarcsca 17314 NrmVeccnvc 24615 CMetSpccms 25385 Bancbn 25386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-bn 25389 |
This theorem is referenced by: lssbn 25405 hlprlem 25420 bncssbn 25427 cmslsschl 25430 |
Copyright terms: Public domain | W3C validator |