![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bnsca | Structured version Visualization version GIF version |
Description: The scalar field of a Banach space is complete. (Contributed by NM, 8-Sep-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
isbn.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
bnsca | ⊢ (𝑊 ∈ Ban → 𝐹 ∈ CMetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isbn.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | isbn 25386 | . 2 ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)) |
3 | 2 | simp3bi 1146 | 1 ⊢ (𝑊 ∈ Ban → 𝐹 ∈ CMetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 Scalarcsca 17301 NrmVeccnvc 24610 CMetSpccms 25380 Bancbn 25381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-bn 25384 |
This theorem is referenced by: lssbn 25400 hlprlem 25415 bncssbn 25422 cmslsschl 25425 |
Copyright terms: Public domain | W3C validator |