MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnsca Structured version   Visualization version   GIF version

Theorem bnsca 25267
Description: The scalar field of a Banach space is complete. (Contributed by NM, 8-Sep-2007.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
isbn.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
bnsca (𝑊 ∈ Ban → 𝐹 ∈ CMetSp)

Proof of Theorem bnsca
StepHypRef Expression
1 isbn.1 . . 3 𝐹 = (Scalar‘𝑊)
21isbn 25266 . 2 (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))
32simp3bi 1147 1 (𝑊 ∈ Ban → 𝐹 ∈ CMetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cfv 6486  Scalarcsca 17166  NrmVeccnvc 24497  CMetSpccms 25260  Bancbn 25261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-bn 25264
This theorem is referenced by:  lssbn  25280  hlprlem  25295  bncssbn  25302  cmslsschl  25305
  Copyright terms: Public domain W3C validator