MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnsca Structured version   Visualization version   GIF version

Theorem bnsca 25264
Description: The scalar field of a Banach space is complete. (Contributed by NM, 8-Sep-2007.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
isbn.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
bnsca (𝑊 ∈ Ban → 𝐹 ∈ CMetSp)

Proof of Theorem bnsca
StepHypRef Expression
1 isbn.1 . . 3 𝐹 = (Scalar‘𝑊)
21isbn 25263 . 2 (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))
32simp3bi 1147 1 (𝑊 ∈ Ban → 𝐹 ∈ CMetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  Scalarcsca 17161  NrmVeccnvc 24494  CMetSpccms 25257  Bancbn 25258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-bn 25261
This theorem is referenced by:  lssbn  25277  hlprlem  25292  bncssbn  25299  cmslsschl  25302
  Copyright terms: Public domain W3C validator