Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bnsca | Structured version Visualization version GIF version |
Description: The scalar field of a Banach space is complete. (Contributed by NM, 8-Sep-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
isbn.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
bnsca | ⊢ (𝑊 ∈ Ban → 𝐹 ∈ CMetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isbn.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | isbn 24407 | . 2 ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)) |
3 | 2 | simp3bi 1145 | 1 ⊢ (𝑊 ∈ Ban → 𝐹 ∈ CMetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 Scalarcsca 16891 NrmVeccnvc 23643 CMetSpccms 24401 Bancbn 24402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-bn 24405 |
This theorem is referenced by: lssbn 24421 hlprlem 24436 bncssbn 24443 cmslsschl 24446 |
Copyright terms: Public domain | W3C validator |