| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bncssbn | Structured version Visualization version GIF version | ||
| Description: A closed subspace of a Banach space which is also a subcomplex pre-Hilbert space is a Banach space. Remark: the assumption that the Banach space must be a (subcomplex) pre-Hilbert space is required because the definition of ClSubSp is based on an inner product. If ClSubSp was generalized for arbitrary topological spaces, this assuption could be omitted. (Contributed by AV, 8-Oct-2022.) |
| Ref | Expression |
|---|---|
| cmslssbn.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| cmscsscms.s | ⊢ 𝑆 = (ClSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| bncssbn | ⊢ (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ Ban) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnnvc 25268 | . . . 4 ⊢ (𝑊 ∈ Ban → 𝑊 ∈ NrmVec) | |
| 2 | eqid 2733 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 3 | 2 | bnsca 25267 | . . . 4 ⊢ (𝑊 ∈ Ban → (Scalar‘𝑊) ∈ CMetSp) |
| 4 | 1, 3 | jca 511 | . . 3 ⊢ (𝑊 ∈ Ban → (𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp)) |
| 5 | 4 | ad2antrr 726 | . 2 ⊢ (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → (𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp)) |
| 6 | bncms 25272 | . . 3 ⊢ (𝑊 ∈ Ban → 𝑊 ∈ CMetSp) | |
| 7 | cmslssbn.x | . . . 4 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 8 | cmscsscms.s | . . . 4 ⊢ 𝑆 = (ClSubSp‘𝑊) | |
| 9 | 7, 8 | cmscsscms 25301 | . . 3 ⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ CMetSp) |
| 10 | 6, 9 | sylanl1 680 | . 2 ⊢ (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ CMetSp) |
| 11 | cphphl 25099 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
| 12 | 11 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) → 𝑊 ∈ PreHil) |
| 13 | eqid 2733 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 14 | 8, 13 | csslss 21630 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (LSubSp‘𝑊)) |
| 15 | 12, 14 | sylan 580 | . 2 ⊢ (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (LSubSp‘𝑊)) |
| 16 | 7, 13 | cmslssbn 25300 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ (LSubSp‘𝑊))) → 𝑋 ∈ Ban) |
| 17 | 5, 10, 15, 16 | syl12anc 836 | 1 ⊢ (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ Ban) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 ↾s cress 17143 Scalarcsca 17166 LSubSpclss 20866 PreHilcphl 21563 ClSubSpccss 21600 NrmVeccnvc 24497 ℂPreHilccph 25094 CMetSpccms 25260 Bancbn 25261 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 ax-mulf 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-rest 17328 df-topn 17329 df-0g 17347 df-gsum 17348 df-topgen 17349 df-pt 17350 df-prds 17353 df-xrs 17408 df-qtop 17413 df-imas 17414 df-xps 17416 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-rhm 20392 df-subrng 20463 df-subrg 20487 df-drng 20648 df-staf 20756 df-srng 20757 df-lmod 20797 df-lss 20867 df-lmhm 20958 df-lvec 21039 df-sra 21109 df-rgmod 21110 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-fbas 21290 df-fg 21291 df-cnfld 21294 df-phl 21565 df-ipf 21566 df-ocv 21602 df-css 21603 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-cn 23143 df-cnp 23144 df-t1 23230 df-haus 23231 df-tx 23478 df-hmeo 23671 df-fil 23762 df-flim 23855 df-xms 24236 df-ms 24237 df-tms 24238 df-nm 24498 df-ngp 24499 df-tng 24500 df-nlm 24502 df-nvc 24503 df-clm 24991 df-cph 25096 df-tcph 25097 df-cfil 25183 df-cmet 25185 df-cms 25263 df-bn 25264 |
| This theorem is referenced by: chlcsschl 25306 |
| Copyright terms: Public domain | W3C validator |