Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bncssbn Structured version   Visualization version   GIF version

Theorem bncssbn 24016
 Description: A closed subspace of a Banach space which is also a subcomplex pre-Hilbert space is a Banach space. Remark: the assumption that the Banach space must be a (subcomplex) pre-Hilbert space is required because the definition of ClSubSp is based on an inner product. If ClSubSp was generalized for arbitrary topological spaces, this assuption could be omitted. (Contributed by AV, 8-Oct-2022.)
Hypotheses
Ref Expression
cmslssbn.x 𝑋 = (𝑊s 𝑈)
cmscsscms.s 𝑆 = (ClSubSp‘𝑊)
Assertion
Ref Expression
bncssbn (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑋 ∈ Ban)

Proof of Theorem bncssbn
StepHypRef Expression
1 bnnvc 23982 . . . 4 (𝑊 ∈ Ban → 𝑊 ∈ NrmVec)
2 eqid 2798 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
32bnsca 23981 . . . 4 (𝑊 ∈ Ban → (Scalar‘𝑊) ∈ CMetSp)
41, 3jca 515 . . 3 (𝑊 ∈ Ban → (𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp))
54ad2antrr 725 . 2 (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp))
6 bncms 23986 . . 3 (𝑊 ∈ Ban → 𝑊 ∈ CMetSp)
7 cmslssbn.x . . . 4 𝑋 = (𝑊s 𝑈)
8 cmscsscms.s . . . 4 𝑆 = (ClSubSp‘𝑊)
97, 8cmscsscms 24015 . . 3 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑋 ∈ CMetSp)
106, 9sylanl1 679 . 2 (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑋 ∈ CMetSp)
11 cphphl 23814 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
1211adantl 485 . . 3 ((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) → 𝑊 ∈ PreHil)
13 eqid 2798 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
148, 13csslss 20399 . . 3 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑈 ∈ (LSubSp‘𝑊))
1512, 14sylan 583 . 2 (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑈 ∈ (LSubSp‘𝑊))
167, 13cmslssbn 24014 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ (LSubSp‘𝑊))) → 𝑋 ∈ Ban)
175, 10, 15, 16syl12anc 835 1 (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑋 ∈ Ban)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ‘cfv 6329  (class class class)co 7142   ↾s cress 16493  Scalarcsca 16577  LSubSpclss 19714  PreHilcphl 20332  ClSubSpccss 20369  NrmVeccnvc 23226  ℂPreHilccph 23809  CMetSpccms 23974  Bancbn 23975 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7451  ax-cnex 10597  ax-resscn 10598  ax-1cn 10599  ax-icn 10600  ax-addcl 10601  ax-addrcl 10602  ax-mulcl 10603  ax-mulrcl 10604  ax-mulcom 10605  ax-addass 10606  ax-mulass 10607  ax-distr 10608  ax-i2m1 10609  ax-1ne0 10610  ax-1rid 10611  ax-rnegex 10612  ax-rrecex 10613  ax-cnre 10614  ax-pre-lttri 10615  ax-pre-lttrn 10616  ax-pre-ltadd 10617  ax-pre-mulgt0 10618  ax-pre-sup 10619  ax-addf 10620  ax-mulf 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3722  df-csb 3830  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4246  df-if 4428  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-se 5482  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-isom 6338  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-of 7397  df-om 7571  df-1st 7681  df-2nd 7682  df-supp 7824  df-tpos 7890  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-2o 8101  df-oadd 8104  df-er 8287  df-map 8406  df-ixp 8460  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10681  df-mnf 10682  df-xr 10683  df-ltxr 10684  df-le 10685  df-sub 10876  df-neg 10877  df-div 11302  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11987  df-dec 12104  df-uz 12249  df-q 12354  df-rp 12395  df-xneg 12512  df-xadd 12513  df-xmul 12514  df-ico 12749  df-icc 12750  df-fz 12903  df-fzo 13046  df-seq 13382  df-exp 13443  df-hash 13704  df-cj 14467  df-re 14468  df-im 14469  df-sqrt 14603  df-abs 14604  df-struct 16494  df-ndx 16495  df-slot 16496  df-base 16498  df-sets 16499  df-ress 16500  df-plusg 16587  df-mulr 16588  df-starv 16589  df-sca 16590  df-vsca 16591  df-ip 16592  df-tset 16593  df-ple 16594  df-ds 16596  df-unif 16597  df-hom 16598  df-cco 16599  df-rest 16705  df-topn 16706  df-0g 16724  df-gsum 16725  df-topgen 16726  df-pt 16727  df-prds 16730  df-xrs 16784  df-qtop 16789  df-imas 16790  df-xps 16792  df-mre 16866  df-mrc 16867  df-acs 16869  df-mgm 17861  df-sgrp 17910  df-mnd 17921  df-mhm 17965  df-submnd 17966  df-grp 18115  df-minusg 18116  df-sbg 18117  df-mulg 18235  df-subg 18286  df-ghm 18366  df-cntz 18457  df-cmn 18918  df-abl 18919  df-mgp 19251  df-ur 19263  df-ring 19310  df-cring 19311  df-oppr 19387  df-dvdsr 19405  df-unit 19406  df-invr 19436  df-dvr 19447  df-rnghom 19481  df-drng 19515  df-subrg 19544  df-staf 19627  df-srng 19628  df-lmod 19647  df-lss 19715  df-lmhm 19805  df-lvec 19886  df-sra 19955  df-rgmod 19956  df-psmet 20101  df-xmet 20102  df-met 20103  df-bl 20104  df-mopn 20105  df-fbas 20106  df-fg 20107  df-cnfld 20110  df-phl 20334  df-ipf 20335  df-ocv 20371  df-css 20372  df-top 21537  df-topon 21554  df-topsp 21576  df-bases 21589  df-cld 21662  df-ntr 21663  df-cls 21664  df-nei 21741  df-cn 21870  df-cnp 21871  df-t1 21957  df-haus 21958  df-tx 22205  df-hmeo 22398  df-fil 22489  df-flim 22582  df-xms 22965  df-ms 22966  df-tms 22967  df-nm 23227  df-ngp 23228  df-tng 23229  df-nlm 23231  df-nvc 23232  df-clm 23706  df-cph 23811  df-tcph 23812  df-cfil 23897  df-cmet 23899  df-cms 23977  df-bn 23978 This theorem is referenced by:  chlcsschl  24020
 Copyright terms: Public domain W3C validator