| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bncssbn | Structured version Visualization version GIF version | ||
| Description: A closed subspace of a Banach space which is also a subcomplex pre-Hilbert space is a Banach space. Remark: the assumption that the Banach space must be a (subcomplex) pre-Hilbert space is required because the definition of ClSubSp is based on an inner product. If ClSubSp was generalized for arbitrary topological spaces, this assuption could be omitted. (Contributed by AV, 8-Oct-2022.) |
| Ref | Expression |
|---|---|
| cmslssbn.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| cmscsscms.s | ⊢ 𝑆 = (ClSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| bncssbn | ⊢ (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ Ban) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnnvc 25256 | . . . 4 ⊢ (𝑊 ∈ Ban → 𝑊 ∈ NrmVec) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 3 | 2 | bnsca 25255 | . . . 4 ⊢ (𝑊 ∈ Ban → (Scalar‘𝑊) ∈ CMetSp) |
| 4 | 1, 3 | jca 511 | . . 3 ⊢ (𝑊 ∈ Ban → (𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp)) |
| 5 | 4 | ad2antrr 726 | . 2 ⊢ (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → (𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp)) |
| 6 | bncms 25260 | . . 3 ⊢ (𝑊 ∈ Ban → 𝑊 ∈ CMetSp) | |
| 7 | cmslssbn.x | . . . 4 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 8 | cmscsscms.s | . . . 4 ⊢ 𝑆 = (ClSubSp‘𝑊) | |
| 9 | 7, 8 | cmscsscms 25289 | . . 3 ⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ CMetSp) |
| 10 | 6, 9 | sylanl1 680 | . 2 ⊢ (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ CMetSp) |
| 11 | cphphl 25087 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
| 12 | 11 | adantl 481 | . . 3 ⊢ ((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) → 𝑊 ∈ PreHil) |
| 13 | eqid 2729 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 14 | 8, 13 | csslss 21616 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (LSubSp‘𝑊)) |
| 15 | 12, 14 | sylan 580 | . 2 ⊢ (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (LSubSp‘𝑊)) |
| 16 | 7, 13 | cmslssbn 25288 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ (LSubSp‘𝑊))) → 𝑋 ∈ Ban) |
| 17 | 5, 10, 15, 16 | syl12anc 836 | 1 ⊢ (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ Ban) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 ↾s cress 17159 Scalarcsca 17182 LSubSpclss 20852 PreHilcphl 21549 ClSubSpccss 21586 NrmVeccnvc 24485 ℂPreHilccph 25082 CMetSpccms 25248 Bancbn 25249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-rhm 20375 df-subrng 20449 df-subrg 20473 df-drng 20634 df-staf 20742 df-srng 20743 df-lmod 20783 df-lss 20853 df-lmhm 20944 df-lvec 21025 df-sra 21095 df-rgmod 21096 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-phl 21551 df-ipf 21552 df-ocv 21588 df-css 21589 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-cn 23130 df-cnp 23131 df-t1 23217 df-haus 23218 df-tx 23465 df-hmeo 23658 df-fil 23749 df-flim 23842 df-xms 24224 df-ms 24225 df-tms 24226 df-nm 24486 df-ngp 24487 df-tng 24488 df-nlm 24490 df-nvc 24491 df-clm 24979 df-cph 25084 df-tcph 25085 df-cfil 25171 df-cmet 25173 df-cms 25251 df-bn 25252 |
| This theorem is referenced by: chlcsschl 25294 |
| Copyright terms: Public domain | W3C validator |