![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bncssbn | Structured version Visualization version GIF version |
Description: A closed subspace of a Banach space which is also a subcomplex pre-Hilbert space is a Banach space. Remark: the assumption that the Banach space must be a (subcomplex) pre-Hilbert space is required because the definition of ClSubSp is based on an inner product. If ClSubSp was generalized for arbitrary topological spaces, this assuption could be omitted. (Contributed by AV, 8-Oct-2022.) |
Ref | Expression |
---|---|
cmslssbn.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
cmscsscms.s | ⊢ 𝑆 = (ClSubSp‘𝑊) |
Ref | Expression |
---|---|
bncssbn | ⊢ (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ Ban) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnnvc 24839 | . . . 4 ⊢ (𝑊 ∈ Ban → 𝑊 ∈ NrmVec) | |
2 | eqid 2733 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
3 | 2 | bnsca 24838 | . . . 4 ⊢ (𝑊 ∈ Ban → (Scalar‘𝑊) ∈ CMetSp) |
4 | 1, 3 | jca 513 | . . 3 ⊢ (𝑊 ∈ Ban → (𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp)) |
5 | 4 | ad2antrr 725 | . 2 ⊢ (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → (𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp)) |
6 | bncms 24843 | . . 3 ⊢ (𝑊 ∈ Ban → 𝑊 ∈ CMetSp) | |
7 | cmslssbn.x | . . . 4 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
8 | cmscsscms.s | . . . 4 ⊢ 𝑆 = (ClSubSp‘𝑊) | |
9 | 7, 8 | cmscsscms 24872 | . . 3 ⊢ (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ CMetSp) |
10 | 6, 9 | sylanl1 679 | . 2 ⊢ (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ CMetSp) |
11 | cphphl 24670 | . . . 4 ⊢ (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil) | |
12 | 11 | adantl 483 | . . 3 ⊢ ((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) → 𝑊 ∈ PreHil) |
13 | eqid 2733 | . . . 4 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
14 | 8, 13 | csslss 21228 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (LSubSp‘𝑊)) |
15 | 12, 14 | sylan 581 | . 2 ⊢ (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (LSubSp‘𝑊)) |
16 | 7, 13 | cmslssbn 24871 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ (LSubSp‘𝑊))) → 𝑋 ∈ Ban) |
17 | 5, 10, 15, 16 | syl12anc 836 | 1 ⊢ (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ Ban) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ‘cfv 6540 (class class class)co 7404 ↾s cress 17169 Scalarcsca 17196 LSubSpclss 20530 PreHilcphl 21161 ClSubSpccss 21198 NrmVeccnvc 24072 ℂPreHilccph 24665 CMetSpccms 24831 Bancbn 24832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7665 df-om 7851 df-1st 7970 df-2nd 7971 df-supp 8142 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-xrs 17444 df-qtop 17449 df-imas 17450 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-ghm 19084 df-cntz 19175 df-cmn 19643 df-abl 19644 df-mgp 19980 df-ur 19997 df-ring 20049 df-cring 20050 df-oppr 20139 df-dvdsr 20160 df-unit 20161 df-invr 20191 df-dvr 20204 df-rnghom 20240 df-drng 20306 df-subrg 20349 df-staf 20441 df-srng 20442 df-lmod 20461 df-lss 20531 df-lmhm 20621 df-lvec 20702 df-sra 20773 df-rgmod 20774 df-psmet 20921 df-xmet 20922 df-met 20923 df-bl 20924 df-mopn 20925 df-fbas 20926 df-fg 20927 df-cnfld 20930 df-phl 21163 df-ipf 21164 df-ocv 21200 df-css 21201 df-top 22378 df-topon 22395 df-topsp 22417 df-bases 22431 df-cld 22505 df-ntr 22506 df-cls 22507 df-nei 22584 df-cn 22713 df-cnp 22714 df-t1 22800 df-haus 22801 df-tx 23048 df-hmeo 23241 df-fil 23332 df-flim 23425 df-xms 23808 df-ms 23809 df-tms 23810 df-nm 24073 df-ngp 24074 df-tng 24075 df-nlm 24077 df-nvc 24078 df-clm 24561 df-cph 24667 df-tcph 24668 df-cfil 24754 df-cmet 24756 df-cms 24834 df-bn 24835 |
This theorem is referenced by: chlcsschl 24877 |
Copyright terms: Public domain | W3C validator |