MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bncssbn Structured version   Visualization version   GIF version

Theorem bncssbn 24873
Description: A closed subspace of a Banach space which is also a subcomplex pre-Hilbert space is a Banach space. Remark: the assumption that the Banach space must be a (subcomplex) pre-Hilbert space is required because the definition of ClSubSp is based on an inner product. If ClSubSp was generalized for arbitrary topological spaces, this assuption could be omitted. (Contributed by AV, 8-Oct-2022.)
Hypotheses
Ref Expression
cmslssbn.x 𝑋 = (𝑊s 𝑈)
cmscsscms.s 𝑆 = (ClSubSp‘𝑊)
Assertion
Ref Expression
bncssbn (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑋 ∈ Ban)

Proof of Theorem bncssbn
StepHypRef Expression
1 bnnvc 24839 . . . 4 (𝑊 ∈ Ban → 𝑊 ∈ NrmVec)
2 eqid 2733 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
32bnsca 24838 . . . 4 (𝑊 ∈ Ban → (Scalar‘𝑊) ∈ CMetSp)
41, 3jca 513 . . 3 (𝑊 ∈ Ban → (𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp))
54ad2antrr 725 . 2 (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → (𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp))
6 bncms 24843 . . 3 (𝑊 ∈ Ban → 𝑊 ∈ CMetSp)
7 cmslssbn.x . . . 4 𝑋 = (𝑊s 𝑈)
8 cmscsscms.s . . . 4 𝑆 = (ClSubSp‘𝑊)
97, 8cmscsscms 24872 . . 3 (((𝑊 ∈ CMetSp ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑋 ∈ CMetSp)
106, 9sylanl1 679 . 2 (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑋 ∈ CMetSp)
11 cphphl 24670 . . . 4 (𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil)
1211adantl 483 . . 3 ((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) → 𝑊 ∈ PreHil)
13 eqid 2733 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
148, 13csslss 21228 . . 3 ((𝑊 ∈ PreHil ∧ 𝑈𝑆) → 𝑈 ∈ (LSubSp‘𝑊))
1512, 14sylan 581 . 2 (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑈 ∈ (LSubSp‘𝑊))
167, 13cmslssbn 24871 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ (LSubSp‘𝑊))) → 𝑋 ∈ Ban)
175, 10, 15, 16syl12anc 836 1 (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈𝑆) → 𝑋 ∈ Ban)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cfv 6540  (class class class)co 7404  s cress 17169  Scalarcsca 17196  LSubSpclss 20530  PreHilcphl 21161  ClSubSpccss 21198  NrmVeccnvc 24072  ℂPreHilccph 24665  CMetSpccms 24831  Bancbn 24832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-om 7851  df-1st 7970  df-2nd 7971  df-supp 8142  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-ghm 19084  df-cntz 19175  df-cmn 19643  df-abl 19644  df-mgp 19980  df-ur 19997  df-ring 20049  df-cring 20050  df-oppr 20139  df-dvdsr 20160  df-unit 20161  df-invr 20191  df-dvr 20204  df-rnghom 20240  df-drng 20306  df-subrg 20349  df-staf 20441  df-srng 20442  df-lmod 20461  df-lss 20531  df-lmhm 20621  df-lvec 20702  df-sra 20773  df-rgmod 20774  df-psmet 20921  df-xmet 20922  df-met 20923  df-bl 20924  df-mopn 20925  df-fbas 20926  df-fg 20927  df-cnfld 20930  df-phl 21163  df-ipf 21164  df-ocv 21200  df-css 21201  df-top 22378  df-topon 22395  df-topsp 22417  df-bases 22431  df-cld 22505  df-ntr 22506  df-cls 22507  df-nei 22584  df-cn 22713  df-cnp 22714  df-t1 22800  df-haus 22801  df-tx 23048  df-hmeo 23241  df-fil 23332  df-flim 23425  df-xms 23808  df-ms 23809  df-tms 23810  df-nm 24073  df-ngp 24074  df-tng 24075  df-nlm 24077  df-nvc 24078  df-clm 24561  df-cph 24667  df-tcph 24668  df-cfil 24754  df-cmet 24756  df-cms 24834  df-bn 24835
This theorem is referenced by:  chlcsschl  24877
  Copyright terms: Public domain W3C validator