MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssbn Structured version   Visualization version   GIF version

Theorem lssbn 25309
Description: A subspace of a Banach space is a Banach space iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
lssbn.x 𝑋 = (𝑊s 𝑈)
lssbn.s 𝑆 = (LSubSp‘𝑊)
lssbn.j 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
lssbn ((𝑊 ∈ Ban ∧ 𝑈𝑆) → (𝑋 ∈ Ban ↔ 𝑈 ∈ (Clsd‘𝐽)))

Proof of Theorem lssbn
StepHypRef Expression
1 bnnvc 25297 . . . 4 (𝑊 ∈ Ban → 𝑊 ∈ NrmVec)
2 lssbn.x . . . . 5 𝑋 = (𝑊s 𝑈)
3 lssbn.s . . . . 5 𝑆 = (LSubSp‘𝑊)
42, 3lssnvc 24646 . . . 4 ((𝑊 ∈ NrmVec ∧ 𝑈𝑆) → 𝑋 ∈ NrmVec)
51, 4sylan 580 . . 3 ((𝑊 ∈ Ban ∧ 𝑈𝑆) → 𝑋 ∈ NrmVec)
6 eqid 2736 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
72, 6resssca 17362 . . . . 5 (𝑈𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋))
87adantl 481 . . . 4 ((𝑊 ∈ Ban ∧ 𝑈𝑆) → (Scalar‘𝑊) = (Scalar‘𝑋))
96bnsca 25296 . . . . 5 (𝑊 ∈ Ban → (Scalar‘𝑊) ∈ CMetSp)
109adantr 480 . . . 4 ((𝑊 ∈ Ban ∧ 𝑈𝑆) → (Scalar‘𝑊) ∈ CMetSp)
118, 10eqeltrrd 2836 . . 3 ((𝑊 ∈ Ban ∧ 𝑈𝑆) → (Scalar‘𝑋) ∈ CMetSp)
12 eqid 2736 . . . . . 6 (Scalar‘𝑋) = (Scalar‘𝑋)
1312isbn 25295 . . . . 5 (𝑋 ∈ Ban ↔ (𝑋 ∈ NrmVec ∧ 𝑋 ∈ CMetSp ∧ (Scalar‘𝑋) ∈ CMetSp))
14 3anan32 1096 . . . . 5 ((𝑋 ∈ NrmVec ∧ 𝑋 ∈ CMetSp ∧ (Scalar‘𝑋) ∈ CMetSp) ↔ ((𝑋 ∈ NrmVec ∧ (Scalar‘𝑋) ∈ CMetSp) ∧ 𝑋 ∈ CMetSp))
1513, 14bitri 275 . . . 4 (𝑋 ∈ Ban ↔ ((𝑋 ∈ NrmVec ∧ (Scalar‘𝑋) ∈ CMetSp) ∧ 𝑋 ∈ CMetSp))
1615baib 535 . . 3 ((𝑋 ∈ NrmVec ∧ (Scalar‘𝑋) ∈ CMetSp) → (𝑋 ∈ Ban ↔ 𝑋 ∈ CMetSp))
175, 11, 16syl2anc 584 . 2 ((𝑊 ∈ Ban ∧ 𝑈𝑆) → (𝑋 ∈ Ban ↔ 𝑋 ∈ CMetSp))
18 bncms 25301 . . 3 (𝑊 ∈ Ban → 𝑊 ∈ CMetSp)
19 eqid 2736 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2019, 3lssss 20898 . . 3 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
21 lssbn.j . . . 4 𝐽 = (TopOpen‘𝑊)
222, 19, 21cmsss 25308 . . 3 ((𝑊 ∈ CMetSp ∧ 𝑈 ⊆ (Base‘𝑊)) → (𝑋 ∈ CMetSp ↔ 𝑈 ∈ (Clsd‘𝐽)))
2318, 20, 22syl2an 596 . 2 ((𝑊 ∈ Ban ∧ 𝑈𝑆) → (𝑋 ∈ CMetSp ↔ 𝑈 ∈ (Clsd‘𝐽)))
2417, 23bitrd 279 1 ((𝑊 ∈ Ban ∧ 𝑈𝑆) → (𝑋 ∈ Ban ↔ 𝑈 ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3931  cfv 6536  (class class class)co 7410  Basecbs 17233  s cress 17256  Scalarcsca 17279  TopOpenctopn 17440  LSubSpclss 20893  Clsdccld 22959  NrmVeccnvc 24525  CMetSpccms 25289  Bancbn 25290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9428  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ico 13373  df-icc 13374  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-sca 17292  df-vsca 17293  df-tset 17295  df-ds 17298  df-rest 17441  df-topn 17442  df-0g 17460  df-topgen 17462  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-mgp 20106  df-ur 20147  df-ring 20200  df-lmod 20824  df-lss 20894  df-lvec 21066  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-haus 23258  df-fil 23789  df-flim 23882  df-xms 24264  df-ms 24265  df-nm 24526  df-ngp 24527  df-nlm 24530  df-nvc 24531  df-cfil 25212  df-cmet 25214  df-cms 25292  df-bn 25293
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator