![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssbn | Structured version Visualization version GIF version |
Description: A subspace of a Banach space is a Banach space iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
lssbn.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
lssbn.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssbn.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
Ref | Expression |
---|---|
lssbn | ⊢ ((𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ Ban ↔ 𝑈 ∈ (Clsd‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnnvc 25393 | . . . 4 ⊢ (𝑊 ∈ Ban → 𝑊 ∈ NrmVec) | |
2 | lssbn.x | . . . . 5 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
3 | lssbn.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | 2, 3 | lssnvc 24744 | . . . 4 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ NrmVec) |
5 | 1, 4 | sylan 579 | . . 3 ⊢ ((𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ NrmVec) |
6 | eqid 2740 | . . . . . 6 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
7 | 2, 6 | resssca 17402 | . . . . 5 ⊢ (𝑈 ∈ 𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋)) |
8 | 7 | adantl 481 | . . . 4 ⊢ ((𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆) → (Scalar‘𝑊) = (Scalar‘𝑋)) |
9 | 6 | bnsca 25392 | . . . . 5 ⊢ (𝑊 ∈ Ban → (Scalar‘𝑊) ∈ CMetSp) |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆) → (Scalar‘𝑊) ∈ CMetSp) |
11 | 8, 10 | eqeltrrd 2845 | . . 3 ⊢ ((𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆) → (Scalar‘𝑋) ∈ CMetSp) |
12 | eqid 2740 | . . . . . 6 ⊢ (Scalar‘𝑋) = (Scalar‘𝑋) | |
13 | 12 | isbn 25391 | . . . . 5 ⊢ (𝑋 ∈ Ban ↔ (𝑋 ∈ NrmVec ∧ 𝑋 ∈ CMetSp ∧ (Scalar‘𝑋) ∈ CMetSp)) |
14 | 3anan32 1097 | . . . . 5 ⊢ ((𝑋 ∈ NrmVec ∧ 𝑋 ∈ CMetSp ∧ (Scalar‘𝑋) ∈ CMetSp) ↔ ((𝑋 ∈ NrmVec ∧ (Scalar‘𝑋) ∈ CMetSp) ∧ 𝑋 ∈ CMetSp)) | |
15 | 13, 14 | bitri 275 | . . . 4 ⊢ (𝑋 ∈ Ban ↔ ((𝑋 ∈ NrmVec ∧ (Scalar‘𝑋) ∈ CMetSp) ∧ 𝑋 ∈ CMetSp)) |
16 | 15 | baib 535 | . . 3 ⊢ ((𝑋 ∈ NrmVec ∧ (Scalar‘𝑋) ∈ CMetSp) → (𝑋 ∈ Ban ↔ 𝑋 ∈ CMetSp)) |
17 | 5, 11, 16 | syl2anc 583 | . 2 ⊢ ((𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ Ban ↔ 𝑋 ∈ CMetSp)) |
18 | bncms 25397 | . . 3 ⊢ (𝑊 ∈ Ban → 𝑊 ∈ CMetSp) | |
19 | eqid 2740 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
20 | 19, 3 | lssss 20957 | . . 3 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
21 | lssbn.j | . . . 4 ⊢ 𝐽 = (TopOpen‘𝑊) | |
22 | 2, 19, 21 | cmsss 25404 | . . 3 ⊢ ((𝑊 ∈ CMetSp ∧ 𝑈 ⊆ (Base‘𝑊)) → (𝑋 ∈ CMetSp ↔ 𝑈 ∈ (Clsd‘𝐽))) |
23 | 18, 20, 22 | syl2an 595 | . 2 ⊢ ((𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ CMetSp ↔ 𝑈 ∈ (Clsd‘𝐽))) |
24 | 17, 23 | bitrd 279 | 1 ⊢ ((𝑊 ∈ Ban ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ Ban ↔ 𝑈 ∈ (Clsd‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 ↾s cress 17287 Scalarcsca 17314 TopOpenctopn 17481 LSubSpclss 20952 Clsdccld 23045 NrmVeccnvc 24615 CMetSpccms 25385 Bancbn 25386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fi 9480 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ico 13413 df-icc 13414 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-sca 17327 df-vsca 17328 df-tset 17330 df-ds 17333 df-rest 17482 df-topn 17483 df-0g 17501 df-topgen 17503 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-mgp 20162 df-ur 20209 df-ring 20262 df-lmod 20882 df-lss 20953 df-lvec 21125 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-haus 23344 df-fil 23875 df-flim 23968 df-xms 24351 df-ms 24352 df-nm 24616 df-ngp 24617 df-nlm 24620 df-nvc 24621 df-cfil 25308 df-cmet 25310 df-cms 25388 df-bn 25389 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |