| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brab2ddw | Structured version Visualization version GIF version | ||
| Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by Zhi Wang, 24-Sep-2025.) |
| Ref | Expression |
|---|---|
| brab2dd.1 | ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜓)}) |
| brab2ddw.2 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
| brab2ddw.3 | ⊢ (𝑦 = 𝐵 → (𝜃 ↔ 𝜒)) |
| brab2ddw.4 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝑈) |
| brab2ddw.5 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐷 = 𝑉) |
| Ref | Expression |
|---|---|
| brab2ddw | ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brab2dd.1 | . 2 ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜓)}) | |
| 2 | brab2ddw.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
| 3 | brab2ddw.3 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜃 ↔ 𝜒)) | |
| 4 | 2, 3 | sylan9bb 509 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
| 6 | simpl 482 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 = 𝐴) | |
| 7 | brab2ddw.4 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 = 𝑈) | |
| 8 | 6, 7 | eleq12d 2823 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝑈)) |
| 9 | simpr 484 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) | |
| 10 | brab2ddw.5 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐷 = 𝑉) | |
| 11 | 9, 10 | eleq12d 2823 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑦 ∈ 𝐷 ↔ 𝐵 ∈ 𝑉)) |
| 12 | 8, 11 | anbi12d 632 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉))) |
| 13 | 12 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉))) |
| 14 | 1, 5, 13 | brab2dd 48748 | 1 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5115 {copab 5177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 |
| This theorem is referenced by: isuplem 49087 |
| Copyright terms: Public domain | W3C validator |