![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brab2ddw2 | Structured version Visualization version GIF version |
Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by Zhi Wang, 24-Sep-2025.) |
Ref | Expression |
---|---|
brab2dd.1 | ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜓)}) |
brab2ddw.2 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
brab2ddw.3 | ⊢ (𝑦 = 𝐵 → (𝜃 ↔ 𝜒)) |
brab2ddw2.4 | ⊢ (𝑥 = 𝐴 → 𝐶 = 𝑈) |
brab2ddw2.5 | ⊢ (𝑦 = 𝐵 → 𝐷 = 𝑉) |
Ref | Expression |
---|---|
brab2ddw2 | ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brab2dd.1 | . 2 ⊢ (𝜑 → 𝑅 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ∧ 𝜓)}) | |
2 | brab2ddw.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
3 | brab2ddw.3 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜃 ↔ 𝜒)) | |
4 | 2, 3 | sylan9bb 509 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜓 ↔ 𝜒)) |
5 | 4 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
6 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
7 | brab2ddw2.4 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐶 = 𝑈) | |
8 | 6, 7 | eleq12d 2835 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝑈)) |
9 | id 22 | . . . . 5 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
10 | brab2ddw2.5 | . . . . 5 ⊢ (𝑦 = 𝐵 → 𝐷 = 𝑉) | |
11 | 9, 10 | eleq12d 2835 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝐷 ↔ 𝐵 ∈ 𝑉)) |
12 | 8, 11 | bi2anan9 638 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉))) |
13 | 12 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉))) |
14 | 1, 5, 13 | brab2dd 48691 | 1 ⊢ (𝜑 → (𝐴𝑅𝐵 ↔ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5151 {copab 5213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |