Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brab2ddw2 Structured version   Visualization version   GIF version

Theorem brab2ddw2 48677
Description: Expressing that two sets are related by a binary relation which is expressed as a class abstraction of ordered pairs. (Contributed by Zhi Wang, 24-Sep-2025.)
Hypotheses
Ref Expression
brab2dd.1 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜓)})
brab2ddw.2 (𝑥 = 𝐴 → (𝜓𝜃))
brab2ddw.3 (𝑦 = 𝐵 → (𝜃𝜒))
brab2ddw2.4 (𝑥 = 𝐴𝐶 = 𝑈)
brab2ddw2.5 (𝑦 = 𝐵𝐷 = 𝑉)
Assertion
Ref Expression
brab2ddw2 (𝜑 → (𝐴𝑅𝐵 ↔ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉,𝑦   𝜒,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜃(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brab2ddw2
StepHypRef Expression
1 brab2dd.1 . 2 (𝜑𝑅 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜓)})
2 brab2ddw.2 . . . 4 (𝑥 = 𝐴 → (𝜓𝜃))
3 brab2ddw.3 . . . 4 (𝑦 = 𝐵 → (𝜃𝜒))
42, 3sylan9bb 509 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜓𝜒))
54adantl 481 . 2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → (𝜓𝜒))
6 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
7 brab2ddw2.4 . . . . 5 (𝑥 = 𝐴𝐶 = 𝑈)
86, 7eleq12d 2827 . . . 4 (𝑥 = 𝐴 → (𝑥𝐶𝐴𝑈))
9 id 22 . . . . 5 (𝑦 = 𝐵𝑦 = 𝐵)
10 brab2ddw2.5 . . . . 5 (𝑦 = 𝐵𝐷 = 𝑉)
119, 10eleq12d 2827 . . . 4 (𝑦 = 𝐵 → (𝑦𝐷𝐵𝑉))
128, 11bi2anan9 638 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝐶𝑦𝐷) ↔ (𝐴𝑈𝐵𝑉)))
1312adantl 481 . 2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝑥𝐶𝑦𝐷) ↔ (𝐴𝑈𝐵𝑉)))
141, 5, 13brab2dd 48675 1 (𝜑 → (𝐴𝑅𝐵 ↔ ((𝐴𝑈𝐵𝑉) ∧ 𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107   class class class wbr 5123  {copab 5185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator