Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinxp Structured version   Visualization version   GIF version

Theorem iinxp 48718
Description: Indexed intersection of Cartesian products is the Cartesian product of indexed intersections. See also inxp 5822 and intxp 48719. (Contributed by Zhi Wang, 30-Oct-2025.)
Assertion
Ref Expression
iinxp (𝐴 ≠ ∅ → 𝑥𝐴 (𝐵 × 𝐶) = ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐶))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem iinxp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 5683 . . . . 5 Rel (𝐵 × 𝐶)
21rgenw 3054 . . . 4 𝑥𝐴 Rel (𝐵 × 𝐶)
3 r19.2z 4475 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 Rel (𝐵 × 𝐶)) → ∃𝑥𝐴 Rel (𝐵 × 𝐶))
42, 3mpan2 691 . . 3 (𝐴 ≠ ∅ → ∃𝑥𝐴 Rel (𝐵 × 𝐶))
5 reliin 5807 . . 3 (∃𝑥𝐴 Rel (𝐵 × 𝐶) → Rel 𝑥𝐴 (𝐵 × 𝐶))
64, 5syl 17 . 2 (𝐴 ≠ ∅ → Rel 𝑥𝐴 (𝐵 × 𝐶))
7 relxp 5683 . 2 Rel ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐶)
8 eliin 4976 . . . . . 6 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
98elv 3468 . . . . 5 (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵)
10 eliin 4976 . . . . . 6 (𝑧 ∈ V → (𝑧 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑧𝐶))
1110elv 3468 . . . . 5 (𝑧 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑧𝐶)
129, 11anbi12i 628 . . . 4 ((𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐶) ↔ (∀𝑥𝐴 𝑦𝐵 ∧ ∀𝑥𝐴 𝑧𝐶))
13 opelxp 5701 . . . 4 (⟨𝑦, 𝑧⟩ ∈ ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐶) ↔ (𝑦 𝑥𝐴 𝐵𝑧 𝑥𝐴 𝐶))
14 opex 5449 . . . . . 6 𝑦, 𝑧⟩ ∈ V
15 eliin 4976 . . . . . 6 (⟨𝑦, 𝑧⟩ ∈ V → (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 (𝐵 × 𝐶) ↔ ∀𝑥𝐴𝑦, 𝑧⟩ ∈ (𝐵 × 𝐶)))
1614, 15ax-mp 5 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 (𝐵 × 𝐶) ↔ ∀𝑥𝐴𝑦, 𝑧⟩ ∈ (𝐵 × 𝐶))
17 opelxp 5701 . . . . . 6 (⟨𝑦, 𝑧⟩ ∈ (𝐵 × 𝐶) ↔ (𝑦𝐵𝑧𝐶))
1817ralbii 3081 . . . . 5 (∀𝑥𝐴𝑦, 𝑧⟩ ∈ (𝐵 × 𝐶) ↔ ∀𝑥𝐴 (𝑦𝐵𝑧𝐶))
19 r19.26 3098 . . . . 5 (∀𝑥𝐴 (𝑦𝐵𝑧𝐶) ↔ (∀𝑥𝐴 𝑦𝐵 ∧ ∀𝑥𝐴 𝑧𝐶))
2016, 18, 193bitri 297 . . . 4 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 (𝐵 × 𝐶) ↔ (∀𝑥𝐴 𝑦𝐵 ∧ ∀𝑥𝐴 𝑧𝐶))
2112, 13, 203bitr4ri 304 . . 3 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 (𝐵 × 𝐶) ↔ ⟨𝑦, 𝑧⟩ ∈ ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐶))
2221eqrelriv 5779 . 2 ((Rel 𝑥𝐴 (𝐵 × 𝐶) ∧ Rel ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐶)) → 𝑥𝐴 (𝐵 × 𝐶) = ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐶))
236, 7, 22sylancl 586 1 (𝐴 ≠ ∅ → 𝑥𝐴 (𝐵 × 𝐶) = ( 𝑥𝐴 𝐵 × 𝑥𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  wral 3050  wrex 3059  Vcvv 3463  c0 4313  cop 4612   ciin 4972   × cxp 5663  Rel wrel 5670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-iin 4974  df-opab 5186  df-xp 5671  df-rel 5672
This theorem is referenced by:  intxp  48719  iinfssclem1  48927
  Copyright terms: Public domain W3C validator