Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imdirval3 Structured version   Visualization version   GIF version

Theorem bj-imdirval3 37218
Description: Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023.)
Hypotheses
Ref Expression
bj-imdirval3.exa (𝜑𝐴𝑈)
bj-imdirval3.exb (𝜑𝐵𝑉)
bj-imdirval3.arg (𝜑𝑅 ⊆ (𝐴 × 𝐵))
Assertion
Ref Expression
bj-imdirval3 (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))

Proof of Theorem bj-imdirval3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-imdirval3.exa . . . . . 6 (𝜑𝐴𝑈)
2 bj-imdirval3.exb . . . . . 6 (𝜑𝐵𝑉)
3 bj-imdirval3.arg . . . . . 6 (𝜑𝑅 ⊆ (𝐴 × 𝐵))
41, 2, 3bj-imdirval2 37217 . . . . 5 (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)})
54breqd 5097 . . . 4 (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)}𝑌))
6 brabv 5501 . . . 4 (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
75, 6biimtrdi 253 . . 3 (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
87pm4.71rd 562 . 2 (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌)))
9 simpl 482 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑋 ∈ V)
109adantl 481 . . . 4 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → 𝑋 ∈ V)
11 simpr 484 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑌 ∈ V)
1211adantl 481 . . . 4 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → 𝑌 ∈ V)
134adantr 480 . . . 4 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → ((𝐴𝒫*𝐵)‘𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)})
14 simpl 482 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
1514sseq1d 3961 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐴𝑋𝐴))
16 simpr 484 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
1716sseq1d 3961 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑦𝐵𝑌𝐵))
1815, 17anbi12d 632 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥𝐴𝑦𝐵) ↔ (𝑋𝐴𝑌𝐵)))
19 imaeq2 6000 . . . . . . 7 (𝑥 = 𝑋 → (𝑅𝑥) = (𝑅𝑋))
20 id 22 . . . . . . 7 (𝑦 = 𝑌𝑦 = 𝑌)
2119, 20eqeqan12d 2745 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑅𝑥) = 𝑦 ↔ (𝑅𝑋) = 𝑌))
2218, 21anbi12d 632 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦) ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))
2322adantl 481 . . . 4 (((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦) ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))
2410, 12, 13, 23brabd 37182 . . 3 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))
2524pm5.32da 579 . 2 (𝜑 → (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌) ↔ ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌))))
26 simpr 484 . . 3 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)) → ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌))
271adantr 480 . . . . . . . 8 ((𝜑𝑋𝐴) → 𝐴𝑈)
28 simpr 484 . . . . . . . 8 ((𝜑𝑋𝐴) → 𝑋𝐴)
2927, 28ssexd 5257 . . . . . . 7 ((𝜑𝑋𝐴) → 𝑋 ∈ V)
3029ex 412 . . . . . 6 (𝜑 → (𝑋𝐴𝑋 ∈ V))
312adantr 480 . . . . . . . 8 ((𝜑𝑌𝐵) → 𝐵𝑉)
32 simpr 484 . . . . . . . 8 ((𝜑𝑌𝐵) → 𝑌𝐵)
3331, 32ssexd 5257 . . . . . . 7 ((𝜑𝑌𝐵) → 𝑌 ∈ V)
3433ex 412 . . . . . 6 (𝜑 → (𝑌𝐵𝑌 ∈ V))
3530, 34anim12d 609 . . . . 5 (𝜑 → ((𝑋𝐴𝑌𝐵) → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
3635adantrd 491 . . . 4 (𝜑 → (((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
3736ancrd 551 . . 3 (𝜑 → (((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌) → ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌))))
3826, 37impbid2 226 . 2 (𝜑 → (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)) ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))
398, 25, 383bitrd 305 1 (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897   class class class wbr 5086  {copab 5148   × cxp 5609  cima 5614  cfv 6476  (class class class)co 7341  𝒫*cimdir 37212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-imdir 37213
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator