Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imdirval3 Structured version   Visualization version   GIF version

Theorem bj-imdirval3 34477
Description: Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023.)
Hypotheses
Ref Expression
bj-imdirval3.exa (𝜑𝐴𝑈)
bj-imdirval3.exb (𝜑𝐵𝑉)
bj-imdirval3.arg (𝜑𝑅 ⊆ (𝐴 × 𝐵))
Assertion
Ref Expression
bj-imdirval3 (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))

Proof of Theorem bj-imdirval3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-imdirval3.exa . . . . . 6 (𝜑𝐴𝑈)
2 bj-imdirval3.exb . . . . . 6 (𝜑𝐵𝑉)
3 bj-imdirval3.arg . . . . . 6 (𝜑𝑅 ⊆ (𝐴 × 𝐵))
41, 2, 3bj-imdirval2 34476 . . . . 5 (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)})
54breqd 5077 . . . 4 (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)}𝑌))
6 brabv 5453 . . . 4 (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
75, 6syl6bi 255 . . 3 (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
87pm4.71rd 565 . 2 (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌)))
9 simpl 485 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑋 ∈ V)
109adantl 484 . . . 4 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → 𝑋 ∈ V)
11 simpr 487 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑌 ∈ V)
1211adantl 484 . . . 4 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → 𝑌 ∈ V)
134adantr 483 . . . 4 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → ((𝐴𝒫*𝐵)‘𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)})
14 simpl 485 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
1514sseq1d 3998 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐴𝑋𝐴))
16 simpr 487 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
1716sseq1d 3998 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑦𝐵𝑌𝐵))
1815, 17anbi12d 632 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥𝐴𝑦𝐵) ↔ (𝑋𝐴𝑌𝐵)))
19 imaeq2 5925 . . . . . . 7 (𝑥 = 𝑋 → (𝑅𝑥) = (𝑅𝑋))
20 id 22 . . . . . . 7 (𝑦 = 𝑌𝑦 = 𝑌)
2119, 20eqeqan12d 2838 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑅𝑥) = 𝑦 ↔ (𝑅𝑋) = 𝑌))
2218, 21anbi12d 632 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦) ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))
2322adantl 484 . . . 4 (((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦) ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))
2410, 12, 13, 23brabd 34443 . . 3 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))
2524pm5.32da 581 . 2 (𝜑 → (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌) ↔ ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌))))
26 simpr 487 . . 3 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)) → ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌))
271adantr 483 . . . . . . . 8 ((𝜑𝑋𝐴) → 𝐴𝑈)
28 simpr 487 . . . . . . . 8 ((𝜑𝑋𝐴) → 𝑋𝐴)
2927, 28ssexd 5228 . . . . . . 7 ((𝜑𝑋𝐴) → 𝑋 ∈ V)
3029ex 415 . . . . . 6 (𝜑 → (𝑋𝐴𝑋 ∈ V))
312adantr 483 . . . . . . . 8 ((𝜑𝑌𝐵) → 𝐵𝑉)
32 simpr 487 . . . . . . . 8 ((𝜑𝑌𝐵) → 𝑌𝐵)
3331, 32ssexd 5228 . . . . . . 7 ((𝜑𝑌𝐵) → 𝑌 ∈ V)
3433ex 415 . . . . . 6 (𝜑 → (𝑌𝐵𝑌 ∈ V))
3530, 34anim12d 610 . . . . 5 (𝜑 → ((𝑋𝐴𝑌𝐵) → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
3635adantrd 494 . . . 4 (𝜑 → (((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
3736ancrd 554 . . 3 (𝜑 → (((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌) → ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌))))
3826, 37impbid2 228 . 2 (𝜑 → (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)) ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))
398, 25, 383bitrd 307 1 (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  wss 3936   class class class wbr 5066  {copab 5128   × cxp 5553  cima 5558  cfv 6355  (class class class)co 7156  𝒫*cimdir 34473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-imdir 34474
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator