Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imdirval3 Structured version   Visualization version   GIF version

Theorem bj-imdirval3 35355
Description: Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023.)
Hypotheses
Ref Expression
bj-imdirval3.exa (𝜑𝐴𝑈)
bj-imdirval3.exb (𝜑𝐵𝑉)
bj-imdirval3.arg (𝜑𝑅 ⊆ (𝐴 × 𝐵))
Assertion
Ref Expression
bj-imdirval3 (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))

Proof of Theorem bj-imdirval3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-imdirval3.exa . . . . . 6 (𝜑𝐴𝑈)
2 bj-imdirval3.exb . . . . . 6 (𝜑𝐵𝑉)
3 bj-imdirval3.arg . . . . . 6 (𝜑𝑅 ⊆ (𝐴 × 𝐵))
41, 2, 3bj-imdirval2 35354 . . . . 5 (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)})
54breqd 5085 . . . 4 (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)}𝑌))
6 brabv 5482 . . . 4 (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
75, 6syl6bi 252 . . 3 (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
87pm4.71rd 563 . 2 (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌)))
9 simpl 483 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑋 ∈ V)
109adantl 482 . . . 4 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → 𝑋 ∈ V)
11 simpr 485 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑌 ∈ V)
1211adantl 482 . . . 4 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → 𝑌 ∈ V)
134adantr 481 . . . 4 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → ((𝐴𝒫*𝐵)‘𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)})
14 simpl 483 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
1514sseq1d 3952 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐴𝑋𝐴))
16 simpr 485 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
1716sseq1d 3952 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑦𝐵𝑌𝐵))
1815, 17anbi12d 631 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥𝐴𝑦𝐵) ↔ (𝑋𝐴𝑌𝐵)))
19 imaeq2 5965 . . . . . . 7 (𝑥 = 𝑋 → (𝑅𝑥) = (𝑅𝑋))
20 id 22 . . . . . . 7 (𝑦 = 𝑌𝑦 = 𝑌)
2119, 20eqeqan12d 2752 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑅𝑥) = 𝑦 ↔ (𝑅𝑋) = 𝑌))
2218, 21anbi12d 631 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦) ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))
2322adantl 482 . . . 4 (((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦) ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))
2410, 12, 13, 23brabd 35319 . . 3 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))
2524pm5.32da 579 . 2 (𝜑 → (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌) ↔ ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌))))
26 simpr 485 . . 3 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)) → ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌))
271adantr 481 . . . . . . . 8 ((𝜑𝑋𝐴) → 𝐴𝑈)
28 simpr 485 . . . . . . . 8 ((𝜑𝑋𝐴) → 𝑋𝐴)
2927, 28ssexd 5248 . . . . . . 7 ((𝜑𝑋𝐴) → 𝑋 ∈ V)
3029ex 413 . . . . . 6 (𝜑 → (𝑋𝐴𝑋 ∈ V))
312adantr 481 . . . . . . . 8 ((𝜑𝑌𝐵) → 𝐵𝑉)
32 simpr 485 . . . . . . . 8 ((𝜑𝑌𝐵) → 𝑌𝐵)
3331, 32ssexd 5248 . . . . . . 7 ((𝜑𝑌𝐵) → 𝑌 ∈ V)
3433ex 413 . . . . . 6 (𝜑 → (𝑌𝐵𝑌 ∈ V))
3530, 34anim12d 609 . . . . 5 (𝜑 → ((𝑋𝐴𝑌𝐵) → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
3635adantrd 492 . . . 4 (𝜑 → (((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
3736ancrd 552 . . 3 (𝜑 → (((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌) → ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌))))
3826, 37impbid2 225 . 2 (𝜑 → (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)) ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))
398, 25, 383bitrd 305 1 (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887   class class class wbr 5074  {copab 5136   × cxp 5587  cima 5592  cfv 6433  (class class class)co 7275  𝒫*cimdir 35349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-imdir 35350
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator