Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imdirval3 Structured version   Visualization version   GIF version

Theorem bj-imdirval3 37167
Description: Value of the functionalized direct image. (Contributed by BJ, 16-Dec-2023.)
Hypotheses
Ref Expression
bj-imdirval3.exa (𝜑𝐴𝑈)
bj-imdirval3.exb (𝜑𝐵𝑉)
bj-imdirval3.arg (𝜑𝑅 ⊆ (𝐴 × 𝐵))
Assertion
Ref Expression
bj-imdirval3 (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))

Proof of Theorem bj-imdirval3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-imdirval3.exa . . . . . 6 (𝜑𝐴𝑈)
2 bj-imdirval3.exb . . . . . 6 (𝜑𝐵𝑉)
3 bj-imdirval3.arg . . . . . 6 (𝜑𝑅 ⊆ (𝐴 × 𝐵))
41, 2, 3bj-imdirval2 37166 . . . . 5 (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)})
54breqd 5159 . . . 4 (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)}𝑌))
6 brabv 5578 . . . 4 (𝑋{⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))
75, 6biimtrdi 253 . . 3 (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
87pm4.71rd 562 . 2 (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌)))
9 simpl 482 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑋 ∈ V)
109adantl 481 . . . 4 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → 𝑋 ∈ V)
11 simpr 484 . . . . 5 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑌 ∈ V)
1211adantl 481 . . . 4 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → 𝑌 ∈ V)
134adantr 480 . . . 4 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → ((𝐴𝒫*𝐵)‘𝑅) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦)})
14 simpl 482 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
1514sseq1d 4027 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐴𝑋𝐴))
16 simpr 484 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
1716sseq1d 4027 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑦𝐵𝑌𝐵))
1815, 17anbi12d 632 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑥𝐴𝑦𝐵) ↔ (𝑋𝐴𝑌𝐵)))
19 imaeq2 6076 . . . . . . 7 (𝑥 = 𝑋 → (𝑅𝑥) = (𝑅𝑋))
20 id 22 . . . . . . 7 (𝑦 = 𝑌𝑦 = 𝑌)
2119, 20eqeqan12d 2749 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑅𝑥) = 𝑦 ↔ (𝑅𝑋) = 𝑌))
2218, 21anbi12d 632 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦) ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))
2322adantl 481 . . . 4 (((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (((𝑥𝐴𝑦𝐵) ∧ (𝑅𝑥) = 𝑦) ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))
2410, 12, 13, 23brabd 37131 . . 3 ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))
2524pm5.32da 579 . 2 (𝜑 → (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌) ↔ ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌))))
26 simpr 484 . . 3 (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)) → ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌))
271adantr 480 . . . . . . . 8 ((𝜑𝑋𝐴) → 𝐴𝑈)
28 simpr 484 . . . . . . . 8 ((𝜑𝑋𝐴) → 𝑋𝐴)
2927, 28ssexd 5330 . . . . . . 7 ((𝜑𝑋𝐴) → 𝑋 ∈ V)
3029ex 412 . . . . . 6 (𝜑 → (𝑋𝐴𝑋 ∈ V))
312adantr 480 . . . . . . . 8 ((𝜑𝑌𝐵) → 𝐵𝑉)
32 simpr 484 . . . . . . . 8 ((𝜑𝑌𝐵) → 𝑌𝐵)
3331, 32ssexd 5330 . . . . . . 7 ((𝜑𝑌𝐵) → 𝑌 ∈ V)
3433ex 412 . . . . . 6 (𝜑 → (𝑌𝐵𝑌 ∈ V))
3530, 34anim12d 609 . . . . 5 (𝜑 → ((𝑋𝐴𝑌𝐵) → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
3635adantrd 491 . . . 4 (𝜑 → (((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
3736ancrd 551 . . 3 (𝜑 → (((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌) → ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌))))
3826, 37impbid2 226 . 2 (𝜑 → (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)) ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))
398, 25, 383bitrd 305 1 (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ ((𝑋𝐴𝑌𝐵) ∧ (𝑅𝑋) = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963   class class class wbr 5148  {copab 5210   × cxp 5687  cima 5692  cfv 6563  (class class class)co 7431  𝒫*cimdir 37161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-imdir 37162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator