Step | Hyp | Ref
| Expression |
1 | | bj-imdirval3.exa |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
2 | | bj-imdirval3.exb |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
3 | | bj-imdirval3.arg |
. . . . . 6
⊢ (𝜑 → 𝑅 ⊆ (𝐴 × 𝐵)) |
4 | 1, 2, 3 | bj-imdirval2 35354 |
. . . . 5
⊢ (𝜑 → ((𝐴𝒫*𝐵)‘𝑅) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}) |
5 | 4 | breqd 5085 |
. . . 4
⊢ (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ 𝑋{〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}𝑌)) |
6 | | brabv 5482 |
. . . 4
⊢ (𝑋{〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) |
7 | 5, 6 | syl6bi 252 |
. . 3
⊢ (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 → (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
8 | 7 | pm4.71rd 563 |
. 2
⊢ (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌))) |
9 | | simpl 483 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑋 ∈ V) |
10 | 9 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → 𝑋 ∈ V) |
11 | | simpr 485 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ V) → 𝑌 ∈ V) |
12 | 11 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → 𝑌 ∈ V) |
13 | 4 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → ((𝐴𝒫*𝐵)‘𝑅) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦)}) |
14 | | simpl 483 |
. . . . . . . 8
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) |
15 | 14 | sseq1d 3952 |
. . . . . . 7
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴)) |
16 | | simpr 485 |
. . . . . . . 8
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) |
17 | 16 | sseq1d 3952 |
. . . . . . 7
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝑦 ⊆ 𝐵 ↔ 𝑌 ⊆ 𝐵)) |
18 | 15, 17 | anbi12d 631 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ↔ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵))) |
19 | | imaeq2 5965 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑅 “ 𝑥) = (𝑅 “ 𝑋)) |
20 | | id 22 |
. . . . . . 7
⊢ (𝑦 = 𝑌 → 𝑦 = 𝑌) |
21 | 19, 20 | eqeqan12d 2752 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((𝑅 “ 𝑥) = 𝑦 ↔ (𝑅 “ 𝑋) = 𝑌)) |
22 | 18, 21 | anbi12d 631 |
. . . . 5
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵) ∧ (𝑅 “ 𝑋) = 𝑌))) |
23 | 22 | adantl 482 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (((𝑥 ⊆ 𝐴 ∧ 𝑦 ⊆ 𝐵) ∧ (𝑅 “ 𝑥) = 𝑦) ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵) ∧ (𝑅 “ 𝑋) = 𝑌))) |
24 | 10, 12, 13, 23 | brabd 35319 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ V ∧ 𝑌 ∈ V)) → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵) ∧ (𝑅 “ 𝑋) = 𝑌))) |
25 | 24 | pm5.32da 579 |
. 2
⊢ (𝜑 → (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ 𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌) ↔ ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵) ∧ (𝑅 “ 𝑋) = 𝑌)))) |
26 | | simpr 485 |
. . 3
⊢ (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵) ∧ (𝑅 “ 𝑋) = 𝑌)) → ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵) ∧ (𝑅 “ 𝑋) = 𝑌)) |
27 | 1 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ⊆ 𝐴) → 𝐴 ∈ 𝑈) |
28 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ 𝐴) |
29 | 27, 28 | ssexd 5248 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ⊆ 𝐴) → 𝑋 ∈ V) |
30 | 29 | ex 413 |
. . . . . 6
⊢ (𝜑 → (𝑋 ⊆ 𝐴 → 𝑋 ∈ V)) |
31 | 2 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑌 ⊆ 𝐵) → 𝐵 ∈ 𝑉) |
32 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑌 ⊆ 𝐵) → 𝑌 ⊆ 𝐵) |
33 | 31, 32 | ssexd 5248 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 ⊆ 𝐵) → 𝑌 ∈ V) |
34 | 33 | ex 413 |
. . . . . 6
⊢ (𝜑 → (𝑌 ⊆ 𝐵 → 𝑌 ∈ V)) |
35 | 30, 34 | anim12d 609 |
. . . . 5
⊢ (𝜑 → ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵) → (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
36 | 35 | adantrd 492 |
. . . 4
⊢ (𝜑 → (((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵) ∧ (𝑅 “ 𝑋) = 𝑌) → (𝑋 ∈ V ∧ 𝑌 ∈ V))) |
37 | 36 | ancrd 552 |
. . 3
⊢ (𝜑 → (((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵) ∧ (𝑅 “ 𝑋) = 𝑌) → ((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵) ∧ (𝑅 “ 𝑋) = 𝑌)))) |
38 | 26, 37 | impbid2 225 |
. 2
⊢ (𝜑 → (((𝑋 ∈ V ∧ 𝑌 ∈ V) ∧ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵) ∧ (𝑅 “ 𝑋) = 𝑌)) ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵) ∧ (𝑅 “ 𝑋) = 𝑌))) |
39 | 8, 25, 38 | 3bitrd 305 |
1
⊢ (𝜑 → (𝑋((𝐴𝒫*𝐵)‘𝑅)𝑌 ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐵) ∧ (𝑅 “ 𝑋) = 𝑌))) |